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NOISE-LIKE SIGNALS AND THEIR DETECTION BY CORRELATION*

ABSTRACT

Communication systems, in which a noise-like
signal is used as an information carrier and cross-
correlation at the receiver is used for detection, are
investigated The probability of error in the recep-
tion of signals by such systems (called NOMAC sys-
tems) is given as a function of input signal-to-noise
ratio, input-to-output bandwidth ratio, and the num-
ber of possible signals. The effect of having a noisy
version of the signal with which the input signal is
cross-correlated is included, and the effect of using
an arbitrary threshold value of the output as a crite-
rion of detection is shown to result in a loss of avail-
able channel capacity, and correspondingly higher
probability of error. Proposed practical systems
employing NOMAC principles are described in some
detail, along with the experimental system that has
been constructed and tested. The experimental re-
sults are shown to agree with the theory.

*This report is identical with a thesis cf the same title submitted in
eartial fulfillment of the requirements for the Degree of Doctor of
Science in the Department of Electrical Engineering at the Massachu-
setts Institute of Technology, Z6 May 1952.
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CHAPTER I

THE BASIC COMMUNICATION SYSTEM

A. Elements of Communication Theory

The theory of information has occupied a position of growing importance in commu-

nication engineering recently. The main purpose of the theory is to provide means for a quan-

titative analysis of communication systems. How this purpose is achieved is illustrated by the

following discussion of a basic communication system.

The communication process starts with the selection at the transmitter of one mem-

ber of a set of possible messages, which in the idealized model take the form of symbols. (In

electrical communication systems, a "symbol" is usually a voltage or current waveform.) The

selection is made at the direction of the originator, and the selected symbol is transformed in-

to a form app:-,.priate for transmission in the channel. The receiver function is to indicate

which of the set of possible symbols was selected; if this is done correctly, the commuriication

link has performed its task perfectly (see F:4 1.1).

Set ofDeor
Possible

Messages (Receiver)

(Symbols)

.ncodr - Disturbed

EncoderChannel

(Transmitter)

-I
Intelligence User of

Input Intelligence

(Originator) (Destination)

Fig. i. 1. Block diagram of general communication system.

The interpretation of tme operation of a communication system as a process of

selection of one from a number of possibilities was made by Nyquist in 1924. 17*This inter-

pretation was later used by Hartley in a 1928 paper 1 2 in which the logarithm of the number of

possible symbols is suggested as a quantitative measure of the information conveyed by the

selection.

Th2 introduction of statistical concepts in information theory led to a more gen-

eral measure of information in terms of the logarithm of the reciprocal of the probability that

*Refer to numbered references at end of report.
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a symbol of the set should be selected. (Obviously, where the set consists of equally probable

symbols, this measure becomes identical with that suggested by Hartley.) An account of this

phase of information theory is contained in the literature, and the reader is particularly dlirected

to the writings of Wiener. 
5 Shannon.

2 Z and Fano.
5

If noise is introduced in the channel, it has the effect of distorting the received

signal in such a way that the distortion might have resulted from more than one of the possible

symbols at the transmitter. so far as the receiver is concerned. The receiver, therefore, can-

not be certain about what was transmitted because of the uncertainty connected with the disturb-

ing noise, and thus is inherently subject to errors in the decoding process.

From the point of view of information theory, the information about the transmitted

symbol at the input of the receiver can be expressed in terms ofl the change in the probabilities

of the possible symbols upon receipt of a signal. Thus, where the set X represents the pos-

sible symbols at the transmitter and Z represents the signal at the input of the receiver when

one of the X's is selected and transmitted, the information gain associated with each of the

symbols is given by

1(X/Z) log PX/Z ( 1- )

In Eq.( I- -I, P(X) is the probability of the symbol while P(X/Z) is the conditional probability

of the symbol following the reception of Z. The information received about the transmitted

symbol is the average of that shown in Eq.(- 1)-, averaged over all X- that could have resulted

in the particular Z received, namely,

I(Z)I = P(X,/Z)og Px/Z) 1-2)
=o P(X)

Note that, in the absence of interfering noise, one of the P(X/Z) would be unity, all others,

zero. Then Eq.(l-2) reduces to the measure given in the earlier paragraph, i.e., log I/P(X),

which measures the information associated with the selection made at the transmitter, and thus

is the measure of the transmitted information.

The point of view of the discussion of the preceding paragrapln is that of Woodward

and Davies.26 They concluded that the best a decoder or receiver can possibly do is to compute

the conditional probabilities of the transmitted symbols when a signal appears at the receiver

input. To demonstrate how this might hie done. Wood%& ard and Lavies considered the case where

the disturbance in thd !hannel'is an independent additive Gaussian white noise. They show that

the conditional probabilities are given by a decreasing function of the mean square difference

between the received signal and the waveform representing the symbol for which the probabil-

ity is being computed. Thus. for the symbol Xk ,

N [ fT [Z (t) - Xk~t)12 dt

P(Xk/Z) = B p(X exp N (1-3)

Here B is a normalizing constant and N is the noise power per cycle of bandwidth. If the

X's are equally likely, p(Xk) is a constant for all k. and P(Xk /Z) is a function only of the in-

tegral of the squared difference [Z (t) - Xk(t)] '
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if a receiver performs the computation of the conditional probabilities and makes

these quantities available to the user of the information, it has relayed all the received information

to the output circuit. An examination of Eq.(! -2) reveals that on the average I(Z) is less than

the transmitted information when noise is present. The information lost is termed equivocation.

It is also apparent that a receiver that computes the conditional probabilities in the

manner described by Eq.( 1-3) performs a comparison of the received signal with each of the

possible transmitted symbols. It is correctly implied that cnp'es of the possible symbols must

be made available at the receiver for the comparison.

One of the problems in communication theory has been how to select the optimum

set of signals into which the transmitter encodes the information so as to lead to a minimum

amount of eqivocation under the condition of fixed rate of transmitted information. This prob-

lem has not been solved in general. It has been shown, however, that sets do exist which can

lead to ratios of equivocation to transmitted irformation that are arbitrarily small, if sufficient

delay is allowed in the communication process. This is true provided the rate of transmission

of information does not exceed the maximum rate at which information may be received through

any particular communication channel.

This fact was stated as an existence theorem and proved by Shannon. l in a par-

ticular form that is applicable to continuously varying time functions disturbed by white Gaussian

noise. Shannon derived the maximum rate, called channel capacity, which is given by

C = W log(1 t5) bits/sec (1-4)

In this expression, W is the (ideal rectangular) bandwidth occupied by the time-varying signal,

S is the component of received signal power due to the transmitted signal. and N is the noise

component of the received signal power. An important condition leading to the derivation of

Eq.( 1-4) is that the average transmitted power is limited.

In his derivation Shannon noted that each of the waveforms of the set of signals

that would lead to a full utilization of the system capacity with arbitrarily low equivocation

would be in all respects similar to white Gaussian noise. Although unable to determine a par-

ticular optimum set of noise-like waveforms, he was able to show that the average performance

of all possible noise waveforms (having the same bandwidth and average power) was ideal, in

that the fraction of transmitted information lost could be held arbitrarily low at information

rates less than the channel capacity. provided sufficient delay were allowed. This performance

could be obtained with a receiver that makes a decision about what was transmitted based on the

minimum mean square difference between the received signal and each of the possible symbols.

A practical and fortunate corollary is that random segments of Gaussian white noise can be used

for symbols, and that these segments of noise can be taken from currently generated waveforms

from a continuous noise source.

Here a new concept of the role played by the decoder or receiver has been intro-

duced. It has been stated that the best a receiver can do when noise is present is to compute

the conditional probabilities of the transmitted symbols following reception of a signal. However.

in a practical case, the receiver is usually called upon to indicate which of the set of possible

symbols was transmitted. The indication is performed after a decision by the receiver of which

3
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symbol should be indicated. Because of the interfering noise, the receiver cannot decide with

certainty, but must choose a symbol that has at least a high probability of having been trans-

mitted. In a typical case. the receiver might indicate the most probable of the transmitted sym-

bols (as Shannon's receiver does).

The indication made by the receiver is, of course, sub-ect to errors. The ratio

of the number of erroneous decisions to total decisions is termed the probability of error. and

is closely related to the fraction of transmitted information that becomes lost - the per-unit

equivocation.

When the receiver makes a decision about what is transmitted, and only this deci-

sion is relayed to the destination, the user of the information knows only that the receiver has

selected one of the set of possibilities in accordance with some detection criterion. The infor-

mation about the conditional probabilities is otherwise discarded, and the over-all per-unit

equivocation is thereby increased.

While the per-unit equivocation is the proper criterion for the evaluation of the

efficiency with which a communication link performs its assigned task, the probability of error

is often used instead. The relation between this relative frequency of erroneous decisions and

the per-unit equivocation when the user of information gets orly the decisions of the decoding

device (receiver) is given in Appendix 1. It is shown that the per-unit equivocation is a decreas-

ing function of decreasing probability of error, which justifies the use of the latter in evaluating

the performance of the link.

B. The Mathematical Model
12

The geometrical model employed by Shannon. and which was subsequently used

by Rice, was also adopted for the theoretical work in this paper. It is useful in relating the

oncepts and results found in this research to those found by these two earlier authors; it is

outlined briefly here.

In its simplest form, it is assumed that the symbols used are segments of a time

function which has (I) a Gaussian amplitude distribution, (2) a flat frequency distribution to W

cycles per second with no component frequencies higher than W cycles per second, and (3) an

amplitude variance S (which becomes the average power for electrical signals). Each of these

segments lasts just T seconds.

It is obvious that, because of the abrupt start and stop of the segments as described,

frequency components outside the bandwidth W cannot be avoided. This suggests the character-

ization of each of the segments in terms of the Fourier coefficients in the manner given by

X TW X I  
2.7i TW X-

X(t) + cos -- t S S sin t
JZ2-TW i=l IT-W T 1 j -w T(15

*For a complete discussion of this relation, see R. M. Fano's printed lecture notes of yearly

course, 6.574, Statistical Theory of Information. M. I. T.

4

UNCLASSIFIED



UNCLASSIFIED

Here

X 1 fT
T 0 T X(t) dt (I -Sa)

X 2 fT 
S - - X(t) cos -4-tdt I(- 5b)

Xj T

S X (t) sin 2- tdt . (1-5c)
iTw T 0  T

The X. or Xj represent the Fourier coefficients, and X(t) is the segment of noise represented.

The constant I/, TW is introduced arbitrarily to control the relative magnitudes of the X's.

It can be shown that, for the time function as described, the X's are numbers drawn from a

normal distribution with variance equal to the power S. By setting an upper limit to the fre-

quencies for which X i are defined, the higher-frequency components introduced by the starting

and stopping of a segment are neglected. As developed, the time functions described will be

low-pass functions. However, the description of band-pass functions can be achieved analogously

by running the index of summation from i = TW 1 to i = TWa where the frequency band between

VV and W is the part of the spectrum occupied by the function.

Another description is necessary to support the material presented in Chapter VIII.

Mthough it is somewhat easier to visualize, it is limited in application to low-pass functions.

It is also useful in interpreting the vector model introduced later in this chapter. Here, each

segn-ci.t is represented by amplitude samples spaced each 1/2W seconds along the waveform.

Thus. there are 2TW samples for each symbol represented by a finito-duration noise-like wave-

form. Because the time function has a flat rectangular spectrum, it can easily be shown that

the amplitude samples are incoherent; and, because they are from a Gaussian process, they

are in fact independent. These samples can thus be used with a sequence of orthonormal func-

tions of the form sin t/t to reconstruct an approximation to the original waveform. One takes

n sin ZnW (t - t i )

X(t) X- 1 (1-6)i= 21tw (t - t i)

in which t i i/2W. T-e X(ti resulting from this summation not only differs from the true value

in the intersample time regions, but differs from zero outside the duration T. It is, however.

a least- inean-square approximation to the true value, as good as can be done with the ZTW

specifying numbers. It is in that respect entirely equivalent to the representation in terms of

Fourier coefficients. Like the Fourier coefficients, it is apparent that the X's in Eq.(1-6) are

also numbers chosen from a normal distribution of variance S.

The n = 2T\V numbers thus chosen to represent each symbol are ordered and taken

as coordinates of a point in Euclidean n-space. Each symbol waveform corresponds uniquely to

a point in the space, such that there are K + I of the points designated by X0 , X. .. X k  Con-

nerting each point and the origin are K - I vectors denoted by X. . Either a point or a vector

may be used to represent the message waveform to which it corresponds.

UNCLASSIFIED



UNCLASSIFIED

It is evident that any point in n-space specifies, a waveform of the same bandwidth

and time duration as the possible message waveforms. The sum of two waveforms, by summing

coordinates, becomes the vector :sum of the two waveform vectors.

One of these vectors (arbitrarily X 0 ) is selected and transmitted. In the channel,

an independent white Gaussian noise, 1, is added. The received signal is by linear superposi-

tion the vector sum (see Fig. 1-2) of 50 and Y and is designated 2. 'The receiver used by Shannon

and Rice has available copies of the set of vectors Xk and chooses., as the one most probably

sent, the one whose terminal point is closest to point Z. Here it is evident that the mean square

difference between the received signal and each member of the set of possible signals is equal

to the squared distance from the point to each point Xk , aside from a constant factor, I/n. (The

term "mean" in mean square difference is used to connote the average over the duration T of

the difference JZ,(t) - X (t)] .)

Since the interfering noise has been assumed

to be white Gaussian, the Woodward and Davies treat-

Yment giving the conditional probabilities, in terms of the

mean square difference is valid. Therefore, it follows

- that the conditional probability of the k th symbol is a

monotonically decreasing function of increasing distance
0  of the point Xk from Z.

The probability of error for a communication

system. choosing as the transmitted waveform the one

Fig. 1.2 Vector model of mes- that is the minimum distance from the received signal

sages, noise, and received signal. waveform (in terms of the geometrical model), was the

subject of Rice's paper. When modified for small sig-

nal-to-noisle ratios, in terms of the channel capacity

C and information rate at the source H = liog 2 (K + 1), the probability of error as obtained in

Appendix III is

P (error) "- ____1_ exp -CIT(1- H) (-7)

This result is valid for large n, for large number of possible messages, K + 1, and for a sig-

nal-to-noise ratio sufficiently small that the approximation nS/N = C'T is valid. The prime

indicates C' is in logarithmic units. In bits, C is equal to [logzeIC'.

It is evident from Eq.(1-7) that the probability of error and thi:s the per-unit equiv-

ocation may be made arbitrarily small with increasing delay T, provided only that H/C, the

ratio of transmitted rate of information to system capacity, does not exceed unity.

Rice did not give Eq.(1-7) explicitly in his paper, but gave an e.xpression for the

probability of no error, valid for large n and large K, but for all signal-ta-noise ratios. He

showed that his expression approaches unity under the conditions above. Iiowever, his expres-

sion was given along with error terms, which decreased with increasing r, and K but which ex-

ceeded the difference between his expression and unity. Thus, a probability-of-error expres-

sion could not be obtained directly from his results, but an intermediate result had to be taken

and worked into the form of Eq.(1 --7) as is shown in Appendix Ill. The fact that the expression

6
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given here is limited to cases where the signal-to-noise ratio at the receiver is small is not a

serious disadvantage, as will be seen later.

It was mentioned earlier that a receiver may use other criteria in deciding, after

a signal has been received, which one of the possible waveforms was transmitted. When such

criteria are proposed, they must be evaluated in terms of the probability of error that accom-

panies the use of that criteria. Of course, other prevailing conditions, such as the method of

coding and type of interference, must be given due consideration. In the class of idealized sys-

tems in which t'e possible message waveforms are random samples of white Gaussian noise and

the interfering noise is a!so Gaussian the rate of errors can be compared with the result ob-
tained by Rice. Rice's results may be regarded as expressing the performance of an ideal sys-

tem in that his receiver will always select the most probable transmitted symbol (under the con-

ditions of additive Gaussian noise and equal symbol probabilities).

7
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CHAPTER II

CORRELATION DETECTION CRITERIA

Another criterion of detection that is of primary interest in this paper can be ob-

tained as follows. Where the various possible transmitter symbols are given by waveforms

Xk(t) , 0< t < T, and the received signal is Z (t)= X (t) + Y (t) (where Y (t) is additive noise).

the minimum mean square d.fference (msd) is given by the minimum of

msd =yJ [Z (t) - Xk (t]dt ,(2-i)

f 1T [Z (t) 2 + X (t) 2  - (t) Xk tM dt -(2-2)

0

If it is assumed that

fo Xk (t) dt

is a constant for all k, a minimum of Eq. (2-2) is a maximum of the term

STZM X k t) dt

This may be recognized as the "correlation coefficient" of Xk and Z, and a receiver that com-

putes this value for subsequent use in deciding what was sent is called a correlation detector.

Correlation techniques were introduced to communication engineers largely by

N. Wiener, and the techniques have been improved and implemented by Lee 16 and others. 15

The cross-correlation function of two stationary random functions of time is given by

I T
12( = 1im - fl1(t) f?(t ' T) dt 12-3)

T-co T

When f2 (t) is identically f I(t), this becomes the autocorrelation function. The relation between

autocorrelation functions and power spectra 2 4 makes correlation techniques an invaluable aid in

the study of random functions.

The so-called "short-time cross-correlation function" has been studied 6 and is

given by

(T) -J f I (t) f (t + "T) dt (2-4)

which is seen to be of the form of the defining expression for correlation coefficients. A gener-

a.lized form of Eq. (2-4) in which the product f(t)f,(t + -) is filtered rather than mathematically

integrated is

0(t, T) tJ h (t - cr) f 1 (o) f2 (a + -r)da ( 2-5)

9
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Here h (t) is the impulse response function of the filter and is sometimes variously called the

integrating function, scanning function, or window function.A4

The use of correlation devices operating as practical correlation detectors in the

manner described mathematically by Eq.(2-5) has brought about the adoption of detection cri-

teria based on correlation outputs in their own right. An advantage of such correlation devices

is that they are not subject to an important limitation on a device computing the mean square

difference. The latter device must know the precise value of the component of received signal

power due to the transmitted waveform as well as the waveform shapes themselves- However,

the former device need know the waveforms only within the freedom allowed by an arbitrary

constant multiplier-

In reference to Eq.(Z-Z), it is apparent that if the integrals

f
T X k it) 2I

2k it

(proportional to the signal energy) are not equal for all k, the criterion of maximum short-time

correlation is not equivalent to that of minimum mean square difference. To illustrate this, the

geometrical model is consulted.

The additive properties of the vector representations of the time functions were

shown to follow from linear superposition. The orthogonality of the components leads to equiv-

alent vector interpretations of the average product or correlation coefficient. For example.

dealing only with the cosine terms of the representation given in Eq.(1-5),

TTTW X_ Z
1f T tzd jT 2'cs-P- k ZwkX (t) Z (t)dt -E Cos T t M cos -- tdt + (other terms), (2-5)T ~ T]W/ T xT

TW TW X 1 2, d k (ri ).(S)Zd k=l TW TJ cos-y-t cos tdt + ( 5a)

when the order of integration and summation is interchanged. But

1_ T li 2k I k (2-6)

T-j cos-T- t cos -- dt = T i

where 6k is the Kronecker delta and 6i  1: 5-k 0, i - k.

Also, the same behavior governs the sine terms, and all the cross terms are zero. Finally,
T TW X.Z.

X(t) Z(t)dt = 11 (2-7)

i=lTW

(The summation on the right is obtained approximately when the alternate representation of the

symbol waveforms in terms of 2TW time samples is employed.)

The ,-X.Z. is obviously the form of the dot or scalar product of the vectors X and

Z. It is related to the distance between X and Z by

Xk.Z 1 2 ;X Xk L 2k 'Z IZI Il -_2 (2-8)
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where Dk is used to denote the distance corresponding to the kth vector- Again, it is evident

that if all IXk are equal, the minimum distance corresponds to the maximum dot product. As

is shown in Appendix II, however, the magnitudes of the vectors Xk are not all equal when they

are segments taken from a random Gaussian noise waveform. Where the signal power S is large

compared to the noise power N, a case such as that shown in Fig. Z-I always has finite probabil-

ity. Here, since 141 is constant for all k, the correlation

OK - ,is that constant times the projection of the vector Xk onto
the vector Z. It is immediately evident that a vector might

occur with magnitude sufficient that, although the distance

Dk>D the projection of X will exceed that of X on Z_
- z k 0' k 0 -

XK When the ratio of signal power S to noise power

N becomes quite small, the term IXk/Z? itself becomes

small. Then the contribution of the fluctuations of the mag-

nitude of Xk to the values of the dot products is to the value
Fig. 2.l. Vector mag- of X

nitude contributions of error. k Z approximately as the signal amplitude is to the

noise amplitude. Thus, for small signal-to-noise ratios,
the equivalence of the criteria of maximum dot product and

minimum distance is again approached, even though the energies of each Xk are not equal. As

is seen later (for all S/N), as the system dimension n is increased, the fluctuations of IXki2

decrease percentagewise, further establishing the equivalence of these two criteria.

The fact that the criterion of maximum correlation is an optimum one for small

signal-to-noise ratios, p = S/N, is not of mere academic interest. It is when p is small that

the communication of information becomes most difficult. Here the channel capacities for chan-

nels of bandwidth conventionally associated with communications become low enough that the in-

formation rates of even relatively low-rate systems, such as telegraph and teletype, become a

significant fraction of the channel capacity.

Furthermore, there are two features of military significance that are inherently re-

lated to low signal-to-noise ratios.

One of these is the possibility of communicating with received signal levels below the

receiver and antenna noise at the receiver location. In the past, other systems have been pro-

posed which provide communication, although the average signal power is less than the noise

power at the receiver input. However, these systems, such as pulse-position or pulse-code

systems, feature bursts of power for relatively short periods of time which are above the noise

level. The average power is less than the noise power by virtue of its being averaged over

larger periods of time. In the proposed systems, the signal power can be less than the noise

power at all times. If unfriendly search receivers are limited to a comparable received power,

it is highly unlikely that such receivers will be aware of the presence of the signal "on the air,"

unless, of course, the unfriendly receiver performs the same operation of correlation as the

friendly one-

Another promising feature deals with resistance to jamming. As Fano has shown,7

the signal-to-noise ratio at the output of a correlation detector is given ideally by the ratio of

total signal energy to noise power per cycle. This suggests the jamming power may be forced

11
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down to a low value compared with the signal energy merely by spreading the signal energy over

a sufficiently wide bandwidth. This spread causes the jamming power to be effectively averaged

over the bandwidth in such a way that the jamming power per cycle is small.

In the next chapter, a specific description of the systems suggested by the properties

of this type of noise communication and correlation is accompanied by a more complete discus-

sion of what services these systems are expected to perform and their advantage in performing

them.

S R
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CHAPTER III

DESCRIPTION OF THE FUNDAMENTAL NOMAC SYSTEM

In view of the advantages that schemes of communication using noise-hke signals

and correlation detectors appear to possess, an extensive investigation into their properties has

been conducted. The code word NOMAC (coined from Noise Modulation and Correlation) has

been suggested for use in referring to such systems.

NOMAC systems, generally speaking, trade bandwidth for the ability to operate at

low signal-to-noise ratios. In view of the present day emphasis on conservation of bandwidth.

these systems should not find application where interference is slight or negligible. However.

in certain military applications the possibility of maintaining communications secure from in-

tercept or reliable in the face of enemy jamming offsets any disadvantage that may be connected

with the use of wide bandwidths.

The block diagram of a fundamental NOMAC system is shown in Fig. 3.1. The set of

possible symbols which take the form of finite duration segments of Gaussian noise is shown at

the transmitter. The transmitter selects one of these waveforms Xk (t) and propagates it

through the channel in which the Gaussian interfering noise Y (t) is added. At the receiver,

copies of the K + 1 waveforms are available to use in K - 1 correlation detectors in which the

received signal is compared with each of the copies representing possible symbols.

Symbol

X ° (t)

SymbolAve raging

X 1 (t) -Mult-. Filter

Channel 
tNoise to

Decision
Circuit

Symbol
~~AveragingW K

XK(t }  Filter W

TRANSMITTER CHANNEL CORRELATION DETECTOR

Fig. 3. 1. Block diagram of typical NOMAC system.
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A problem of major importance in the design of NOMAC systems is that of deliver-

ing the copies of the possible waveforms to the receiver so that correlation may be performed.

The attempts at a solution of this problem divide NOMAC !systems into two categories. one in

which the possible symbol wavieforms are stored at the receiver, and another in which the wave-

forms reach the receiver as reference signals through one or more auxiliary channels.

The first category, called the stored-signal system, presents rather severe require-

ments of time synchronization, in order that the correlation coefficient calculated will corre-

spond to the T = o point of the autocorrelation function. One advantage of this system is that.

while the segments may be chosen at random from white Gaussian noise, they become a known

set once the choice is made. Thus, a scale factor may be employed to make each of the symbol

energies equal, which establishes the exact equivalence of the criteria of maximum correlation

and of minimum mean square difference.

In the second category, the synchronization problem is largely eliminated, but noise

is generally present in the auxiliary channels also. Here the signals may be randomly selected

from one or more noise sources that are currently generating the noise. Obviously, these sym-

bol waveforms will be random in all respects.

In Fig. 3.2, curves of the signal-to-noise ratio in the output of an ideal correlation

detector as a function of the input signal-to-noise ratio and n = ZTW are shown for the two cat-

egories of NOMAC system. It will be shown subsequently that, when filtering is used for the in-

tegration in the correlation process, n is in reality the ratio of the input-signal bandwidth W

to the noise bandwidth of the integrating filter. In the figure, the signal-to-noise ratio p, or

(S/N) c, is assumed the same for both intelligence and auxiliary channel or channels. From the

figure, if a required output ratio and n are known, one may determine the permissible input

signal-to-noise ratio. Conversely, if a desired input signal-to-noise ratio and required output

signal-to-noise ratio are specified, the necessary bandwidth ratio is easily obtained for either

type of system.

SINGLE -CHANNEL/,' J
SYSTEM

/" ,
0S 'SEC U

TWO-CHANNEL SYSTEM N -HO

/ rRANSMITTE .N).
1

'(A~ 411
/.0 L"

0,01 01 1 10 '100

Fig. 3.2. Signal-to-noise improvement Fig. 3.3. Secure region
in correlation vectors. of communication.
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To demonstrate the secure communication properties of such a system, suppose

that the NOMAC system as designed will operate satisfactorily at an input signal-to-noise ratio

(S/N) min' while an unfriendly search receiver can detect the radiation only at signal-to-noise

ratios greater than a larger value (S/N) max. Then, as is seen in Fig. 3.3, there is a "secure"

region or annular ring about the transmitter in which communication might be carried out by

friendly parties without the knowledge by unfriendly forces in that region.

An inverse line of reasoning would demonstrate that an unfriendly jamming trans-

mitter might be believed to be effective against the assumed transmitted power as determined

by the power received at the jamming site to some range R . On the other hand. communica-

tion would actually be maintained to the inner radius R i , and the "secure region" now becomes

a marginal communication area which might co zeivably prove quite embarrassing to the un-

friendly forces.

As presented in F:1  I 'he -!.damen, -l NOMAC system is idealized to facilitate

the theoretical investigation. The typc- of decision circuit is not specified in order to permit

some latitude in the interpretat, n an. :.plication of the figure. In the following material, two

types ot decision circuit are evaluated in detail. The first of these is one that establishes the

criterion of maximum correlation in its selection of which of the symbols X k was transmitted.

The second decision circuit (and the easiest t. nstruct in practice) sets as a criterion the ex-

ceeding of a fixed threshold. Called threshold detection, it indicates a signal as having been

transmitted whenever the correlator output corresponding to that signal exceeds the threshold

value.

It is not intended to convey the impression that only systems designed precisely as

indicated by the block diagram are inci-ided in the analysis presented. Modifications of the anal-

ysis given here for discrete syste-as, along with the work appearing elsewhere concerning the

improvement of sirr-al-to-noise ratio in correlation detectors, 7 can be made to extend the cover-

age to a varied .ass of similar systems. For example, one might use a single random-noise

source to obt.ain the different symbols merely by using delayed versions of the initial noise for

the sources of the currently chosen segments. The delay increments need only be great enough

to correspond to values of -r of the autocorrelation function of the noise for which the correla-

tion function is essentially zero.

Other versions of NOMAC systems may include those in which the noise-like wave-

form is modulated in the same manner in which a sinusoidal carrier is modulated in convention-

al communication systems. For example, the transmitted random waveform might be varied

in amplitude, frequency band of transmission, or relative time of transmission. These varia-

tions correspond to conventional AM, FM and PPM, for example. Obviously, combinations of

any of these modulations are possible just as with sinusoidal carriers. The experimental mod-

el shown in block diagram in Appendix VII, Fig. 3 is essentially an amplitude-modulated version

of a NOMAC system, and its theoretical probability-of-error treatment corresponds to the sig-

nal-to-noise improvement type of analysis that would be used for an AM system.
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CHAPTER IV

THE THEORETICAL STUDY OF PROBABILITY OF ERROR

A. The Criterion of Maximum Correation

When the receiver of a NOMAC system makes its decision about which of the signals

XK (t) was transmitted - based on the criterion of max.mum correlation output - the rate of mak-

ing errors has been obtained. The result, which is valid for large n, and for signal-to-noise

ratio p, such that the product np is larger than about 2, is given by the approximation

P (error) K erf n(p
2P -)P

where

erf Q r co exp [- {tfldt-

For still larger values of np. but only for small signal-to-noise ratios, the expression agrees

with that of Rice, namely,

P (error) - (4-1a)

Here, p << I, so that np A C'T: and K>> I, so that InK A InK - 1 = H'T.

These results were obtained using the geometrical model in the following manner.

First. there are K 4 1 independent message vectors which are represented by 0 , Xl ....

Appendix II derives the probability density distribution for the magnitude of these vectors, a

type familiar in the study of statistics For the message vector R, where S is the average

signal power, it is given as follows:

X) ex( (4-2)

As is shown in Appendix II, this distribution has an average value of
n+ I.

nf
17 (-T)

and a variance of not more than 14S. The average value is \riS within an error of one part in

each 4n parts.

Here it must be pointed out that approximations are made throughout the paper, pri-

marily because the representation of the actual waveforms as having a Gaussian probability
14

density distribution is only approximately correct, and it may be considerably in error along

the "skirts" of the distribution curve. Except where otherwise noted, linear systems are as-

sumed, which is not necessarily the case in practice and is certainly not true over the whole

range of amplitude values for which the Gaussian distribution is defined. Since all the results

17

CONFIDENTIAL



CONFIDENTIAL

obtained depend on these two assumptions (and other assumptions), results may in some cases

be true only to the order of magnitude represented- However, the primary purpose, which is

that of indicating the behavior one might expect in a physical system and of demonstrating how

the behavior varies with important parameters. is served.

In Fig. 4.1, the combination of one of the message vectors, say, X 0 ' and the inter-

fering noise Y are shown resulting in the vector Z. Also, another typical message vector Xk

is shown. The points X lie approximately on a hypersphere of radius --nS, while Z lies approx-

imately on a hypersphere of radius s-JP. Here P is the total power S + N where S is the sig-

nal power and N is the interfering noise power. The NOMAC receiver cross-correlates the

received signal, vector Z, and each of the message waveforms, vectors Xk' As stated before,

this is equivalent to taking the dot product between the Z vector and each of the set of rressage

vectors aside from the constant 1/. The resulting set of dot products is designated by Wk.

Up to this point, the analysis of a NOMAC sys-

tem does not depend on how the receiver makes use of the

-outpats Wk. However, for further study it is necessary to

distinguish between the two cases: that in which the receiver

z decision circuit indicates the largest Wk as the one determin-

ing the transmitted signal; and that in which a Wk that exceeds

a previously established threshold value is the indication of
Xk 03 the transmitted signal.

For the case in which the criterion of detection

is that of maximum correlator output, it is evident that no
Fig. 4.1. Vector model error will occur if the dot product W ° exceeds all other Wk -

of messages, noise, and re- -
ceived signal (Fig. 1.2). This in turn is the case if the component of the vector X

along Z is greater than the Z-components of all other vec-

tors Xk. Since the coordinates of the vectors are independent random values, the vectors them-

selves are randomly distributed in n-space. Appendix IV illustrates this point and shows that

the Z-component of any of the K vectors not selected at the transmitter is chosen from the same

density distribution as are the coordinates of the message vectors. Therefore, the probability

density distribution of the Z-components is given by the Gaussian function

p(XI) = exp [X'] (4-3)

The prime is here used to indicate the component in the direction of Z.

The probability that any one Z-component will be less than the Z-component of X0

(hereafter designated Xz) is given by

X

P(X:cX )= f 0z p(X')dX' , (4-4)

I I-f p(X') dX' (4 -4a)

z

The probability that all K vectors not selected for transmission will have
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Z-components less than Xz is given by

P(all X'<Xz) = [ -f p(X') dX (4-5)

z X (4

The probability of no error is the average of the probability given over all values assumed by

Xz . This is indicated formally as

P(no error) j_ pI(Xz) P(all X'<Xz) dX z  (4-6)

from which

P(error) = 1 -f P(Xz) L1  P(X')dX' dX z  (4-7)

The function pl(Xz), the probability density distribution function of Z-components

of the vector X 0 . must be determined in order to carry out the indicated integration. This is

one of the more difficult aspects of the problem, and a considerable portion of the total research

has been devoted to finding the properties of and suitable approximations for the density distribution.

B. The Density Distribution of Xz

As shown in Fig. 4.2, the vector V can be broken into two components, one of which

is along go and one normal to X0 " Furthermore, these two components are independent. This

conclusion is reached after noting that the n com-

_ ponents making up vector V are independent,

[ N and, according to the methods of Appendix IV,
IYI may be thought of as independent after rotation

Y2 of the coordinate axes, since ~7 is independent

of the vector R0 onto which the initial axis is

Xz  Xaligned in this example. There are thus three

independent quantities, 'X1. Y1 and Y,, that

combine to yield vector Z in a right-triangle

relationship. As expressed, Y1 is always pos-
Fig. 4.2. Message, noise, and signal itive (a magnitude) while Y2 may be positive or

vectors showing components of vectors.
negative.

,zi 1(' + Y 9 1 + Y (4-8)

A knowledge of the right triangle formed by these components leads to a fairly simple expres-

sion for X in terms of these quantities, namely.

!Xo + Y

X ix (4-9)
X +Y 2 ) + Y 1
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A somewhat more easily handled expression is

z = (4- 10)z ~Y 2

+ Y1 IXoI + Y?) z

or
';ol x < 0 4f Y 2<- Ix 01

X. (4-1 k )

+- 1 I 2 X z > 0 if Y 2 >- Xl0 1

6V ( +Xi ±Y 2 )

Then, by steps,

Xz<aj = <a], a< 0; (for Y 2 < lxo) (4-12)

S(iX01 + Y )2

1 + 0  <al a>0; (for Y > - xi1) (4 -IZa)

(Ixol + Yz)2

With due regard for the sign of a, an intermediate step follows, valid for both Eq(4-12) and

Eq.(4- 1Za).

a 1P[XzCa}= P[XOI +Y ~< XojZa 2 ]4-1lab)
Then

P[Xz<a] P( ix 0  1 + o _Y . for Y 2 > xo (4-,3)

-P[xxoi Y2 ).- or Y < - Ix 0  . (4-13a)

Y2

P(Xol Y <a :xj 2 a ,± by sign of a, for jaI < , (4-13b)

20
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aY

[y a< Xo a Ixi i1o ' loral I X 01 (4-14)

Obviously. IXJ <IX 0 I - and therefore P(Xz<a), is unity for all a>IX01 while .t is zero if

a< -iX I
Expression (4-14) is derived for f.xed Ixo; and YI- The average probability that

X z is less than a 's obtained by averaging over all IX and Y1

Pl[X <a] =f p(jX 0 1o)d Xo f Pq(Yl)dY1 P [<a ix 2 aI2 j F (4-15)1 z~l [Y 0 '~ l (-

in which

0, for a<- IX0

aY I  , aY I  Xo

aY1  ____0__2

P[Y< aFY% X01- - aa' _I - PY1

L 2  p(Y dY - ex dY

for- ;Xo < a< IXo -

for a> IX0 ! (4-16)

A sketch of cumulative probability distribution P[Xz<a] for particular IX0 iand Y 1

is shown :n Fig. 4.3.

O.5f_________Fig. 4.3. Probability distri-
I bution of components.

-Ix 0I 0 IX012  IX01 a

With the aid of Fig. 4.3, it is seen that, when a is positive,

aY1  iX

z 
0

P[Xz<a]foP(X)diX° "f P(X°I)d'X°'f Pa(YI)dYif o p(Y2dY2

(4-17)

for a < o.
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aY
1I

PR/ a] tha P(IX!)d IXIf Pq(Y) dYjf 0 (Z Y

The probability density distribution function is obtained by diferentating Eq.C4- 17)
and Eq.(4-17a) with respect to a (see Ref. 8, page 55).

aY1

pa)-4- ~xidx +f PX oI~If PqCY1)d 1~4 ( 2 dY2

aY1

P( 1 0pIX' Z-a I

0oI ofq (Yi) dYif '0 p (YZ)dY2 IX0 1 a

(4-18)

or

1X1 -a 26 aY 1 'a (4-1a)
p 1 (a) a pj 0 )d ix)if PqYjd 1  aXX IId Ixi~2

which becomes

PI~~fji~ld~jfP 4CY1)d 1  2 0 2~ 3/ X1  , 0  (4 -18b)
aIXI2-a2f xj-a 2

When a is negative,

aY'

P1  a0V0"P(1a(a) JP(JxOi)dixj PqY)dYj1 j 0  p(Y2 ) dY2

JX'3J -a
[P~ x fPq(Y)dYjf I(2 jx0  (4--a- o (I4-I1)I

or

p1L(a)=fa p0 (IXj)dIXj 0  pq(Y1 )dY 1  Qf xi (4-19a)

22

CONFIDENTIAL



CONFIDENTIAL

When written in terms of X., the desired probability density distribution function
for Z-cornponents of the vectors IX I reads

0

% X )di.!fc ,Y)d Ixo 0 Il x1 XY, X }-0

p(X5) x °loI ° -oJ0 qYId± 2 x 3/2 j ,x)- l2 (4-2o)

'C 10 a1 X ) AlX I

In Eq.(4-20). the p without a subscript denotes a normal probability distribution function with
variance N, while p is used to designate a distribution of the type considered in Appendix II,
in this case of dimension n derived from a variance S. The other function distinguished by the
subscript q is of the same type as P0 , but of dimension n - I and with S replaced by N, the

noise power.

It is therefore apparent that P1(Xz) in Eq.(4-20) is a Gaussian distribution function
modified by the ratio

0x]Yl X YI

(IXJ-) 2 ___ 0
and subsequently averaged over all IXo1 greater than X z and over all Y It is immediately

evident that the work necessary to determine a precise expression for Pl(Xz) represents an un-
wise investment in time, since the precision of the original assumptions does not justify the
labor. However, an examination of the factors contributing to P1 (Xz) can lead to a useful ap-

proximation.

First, since pl(Xz) is largely an averaged form of a Gaussian distribution function,
it should itself tend to a bell-shaped distribution, particularly for large n for which the aver-
aging probability functions approach impulse functions. It follows that the average value and the
variance of the distribution can be used to obtain a suitable approximation under certain con-
ditions.

The average value of X z is difficult to obtain, but it approaches 4-nPS for large
n and does not differ greatly from this value. This fact is demonstrated by expanding the ex-
pression for X z in terms of IXJ , Y1, and Y2 in a Taylor series about the value of X z assumed
when each of these variables takes on its average value. It then can be shown that the expecta-

tion E (Xz - X Z
)2 is an order of magnitude smaller than IXzJ2 which represents this average

value squared. The first term of the expansion is

8X ax 8X
AX = - Z AIXI A Y 0--+a AY (4-21)

Since the standard deviations of X01, YI and Y2 are small compared to the vectors making up
the triangle (for large n) the first t-rm is used to represent all significant contributions to X

a
From their independence, the variance of the sum is the sum of the variances of the components,
namely, 2 2a 1

r z 2[4 Faffy 4 j (r Y?] (4 - ZZ)LraYZ X+
Xz 01 rayL Ix R I l,.z
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a x i 0 1•• i + Y ) l o

1(;X -) [cxI 9 Yfl(zIX y) -X '+Y )1X0 , 2 3/2 o (4-23)
•( :Xo 01x Y?)z  Y I

axZ [ix Y 2 )o + YJ)x 0 I - + ? IX
0Y 1  [ c1 0x0 + Y0 0l4'4

8Y~[ + ~3/2

When the partials are evaluated at the mean X z and inserted in Eq.(4-22) the

result is

112 2 1
2- 3 (4-26)
Xz 2 (S 2 N) 3

Since large n has already been postulated, neglect of the terms 1/n puts Eq.(4-26) into the form

2 2 -S[ N] -(4-2
6 a)

zzThe validity of Eq.(4-26a) depends upon the sinallness of the rato rX zi/Xz , which

is of the order 4S- 47-n§/P S. Thus, if nSP>>I, Eq.(4-26a) is useful. The earlier stipulation

of large n is consistent with this requirement. It is noted that, for small signal-to-noise ratios,

nS/P -" nS/N. This in turn is

nS = ZTWS s
N _ N -K - = np (4-27)

0

Here E is the total signal energy, N the noise power per cycle. Here again, p is used toS o

indicate the signal-to-noise ratio in the signal or intelligence channel and 2(E/N 0 ) and np are

used interchangeably, the latter being preferred when brevity is an asset.

The average value and the variance lead to the writing of an approximation for

P1 (Xz) in Gaussian form, which is vaiid for large n as follows:

p1  exp -V X S/ ] (4-28)

(F x ?a-(z 2 r ff2 L z Z Pj

This expression is reasonably close to the true distribution over the bell-shaped

part of the curve, which is the significant portion of the distribution. Fortunately, while Eq.(4-28)

may be considerably in error along the skirts, its role in the iJntegration is only one of aver-

aging, and the parts most in error contribute ieast to the final resuAt. The related dtstributon
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of the normalzed value X z  S 4n/P is

(_z___ [xl nS ____)2

expl-,S + -N) (4-28a)#gT s7 N) n V
nS J

When this substitution is properly made .n Eq (4-7), the result obtained 's

P2(error) ( 1 - S - d dX (4-29)

-w q~ L nS

It is observed that the distribution pl(Xz) has an essentia:ly constant spread, but the average2
value of X increases as the square root of n. The spread or variance, -Xz, goes to zero

with the signal power, goes to 1/2S as the noise power approaches zero, and never exceeds the

signal power. Thus, the variance becomes small, percentagewise, with increasing n . The

normalized distribution function pj approaches an impulse function.

In view of these properties, one will note that the probability of error given by

Eq. (4-8) will not differ much from the result acquired by substituting the average XZ in the ex-

pression in brackets, rather than performing the indicated averaging. Then.

P(error) I p(X) d K (4-30)

or, by change of variable, S

P (error)- I 1 00ex dvj (4 -30Oa)
If the integral is small compared to unity (note that if -'InSP is about 1.3, the integral is less

than 0.), a further approximation is given by

P (error) -K f d' .v (4 - 30b)

For values of -1 nS/P consistent with Eq. (4-26), one may use the further approximation

f 0exp Ft'/] dt -- 1x 2 2
Q L_- Qexp

which, when used here, results in the expression
nSi

P(error) - K ()exp .2-] j. (4-31)

A comparison of Eq.(4-30) with the expression of Eq.(A3-6) shows the expected simi-

larity. Therefore, here too, if the approximations nS/ZP = C'T for S<< IN, and K = exp[H'TI for
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K >> I are used, an expression for the probability of error is
1

P(error) exp [-C'T(l - -] (4-31a)

The implication of expressions of the Eq.(4-31a) is that the probability of error, and

thus the per-unit equivocation, can be held arbitrarily low by increase of T (involving delay) if

only the H/C ratio is less than unity by an amount however small. However, this expression is

valid only for small signal-to-noise ratios. For larger values of S/N, the ratio S/P approaches

unity and is, of course, smaller than ln(l + S/N). It follows that H (for large K) must be less

than a number smaller than the theoretical capacity if the exponential [In K - nS/ZP] is to remain

negative.

It is of incidental interest to note that Shannon shows (see Ref. 22, page 63 - "White

Gaussian noise has the peculiar property. . . ") that any random waveform can be used in a sys-

tem disturbed by white Gaussian noise and can approach the ideal when the signal-to-noise ratios

are small. This fact is illustrated in Golay's result 11 for pulse position modulation under the

assumption of small signal-to-noise ratio. It is worth repeating that it is the distinct advantage

of correlation techniques that they present the most suitable methods of accomplishing the prac-

tical identification of randomly varying signals buried in noise.
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CHAPTER V

THE THEORETICAL STUDY OF THRESHOLD DETECTION

A. The Probability of Error for an Arbitrary Threshold

Threshold detection is given the distinction of a separate chapter because it repre-

sents a technique in common use, and thus deserves an accurate and complete analysis for com-
parison with the foregoing more-or-less ideal methods of reaching a decision about the trans-

mitted signal.

In review, a threshold-detector scheme is one in which the decision about which of

the possible message waveforms was transmitted is based on one of the outputs Wk (see Fig.3A.)
exceeding a predetermined fixed value called the threshold. Of course, if two or more outputs

exceed the threshold value, or if none exceeds it, no decision can be made, and an error results.

Obviously, there is also an error if only one of the outputs exceeds the threshold but if that output

does not correspond to the transmitted message.

A first-order expression of the effect of establishing an arbitrary threshold can be

outlined as follows. In Fig. 5.1, fur a given received signal Z, the correlation output W is the

segment RO times 1ZJ, It is assumed that an arbitrary
P

fraction of the expected output W 0is chosen as the threshold,
and that OQ is the corresponding component along Z neces-

sary to produce the threshold value in the output of a corre-

lator. The expected output is nS, and the threshold is anS.
where a is the "threshold coefficient. " Thus, the segment

OQ corresponds to aSln/P.

The possibility that a combination of 0 andY

might occur to yield a Z-component of X 0 less than OQ is
0 neglected for the moment, and only the probability of error

caused by the occasional occurrence of a component of an
Fig. 5.1. Vector model

illustrating threshold detection. Xk (k y 0) in the Z-direction which exceeds OQ will be in-

vestigated.

The vectors Xk are randomly oriented in n-space,

and to a first approximation are of equal length. Thus, they terminate randomly on a hypersphere

that is the locus of all points of distance 12( = 4YI from the origin. If one of the vectors Xk

should terminate in the zone above Q in Fig. 5.1. its Z-component will exceed OQ and an error

will occur. The probability of errors due to this cause is thus approximately equal to the ratio of

the area of the zone to the area of the sphere for any one random vector, The area of the zone

will not exceed the area of a hemisphere of radius h (see Fig. 4.1). Thus,
-A (h)

P(Xk lies in zone)< AI) (5-1)

Here A (h) is the area of a hypersphere of n dimensions as discussed in Appendix 1I (see All-17)
and with radius h. From Eq. (5-1). it follows that
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P(Xk lies outside zone) >i I n (5-2)
?XK

But h is seen to be ' 1 -_(aans
2 )/P , while lxi is the radius of the hypersphere,

4 . From these values, Eq. (5-2) may be rewritten

n-l

P(Xk lies outside zone) > I -S - 2 (5-3)

or

n-1

2N + S (N+aS ) (5-3a)

Since K is always one or greater, one may readily writen- K
I a2 "

P(all Xk lie outside zone) > I - ( ?- I -a5-4)

and from Eq. (5-4) the probability of error from this cause (components of wrong vector ; exceed-

ing OQ) is

P (error) < 1 1 1 a?- 2 (

n-l

<K + 1 a a2.) 2 (5-5Sa)

The validity of Eq. (5-5a)is insured by subtracting the smaller value

n-i

22

from unity rather than the larger indicated

Also, K + 1 is certainly larger than the K for which it is substituted- From Eq. (5-5a) it follows

that

P(error)< K+ I N + S(I-PI S < (5-6)
2 1-a-

or

n

log, (K+ 1)(- + r, lg 2 1+S(1-a 
2

< ZS (5 -7)

2 N 1 - a 4 T
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In terms of capacity and information rate of the source, this becomes

P (error) < 4 NT.o5-8)

2Nla Z

In Eq. (5-8). increasing the signal duration T will lead to, any desired frequency of

errors, however small, if CT exceeds (r4)log?[1 + ,(S/N) (1- a2 )] + HT. This is equivalent to

subtracting from the theoretical capacity a capacity equal to that of a similar system in which

the received average power is (1 - a 2 ) times the original signal power, and requiring that the

information rate at the source be less than the diminished capacity. For small signal-to-noise

ratios, the remaining useful capacity is only a2 times the theoretical capacity. From a differ-

ent point of view, the transmitted power is only a2 times as effectve as the th o. .tical limit,

and a corresponding increase in power might be utilized to regain the performance that would

correspond to the ideal use of the original power.

In the foregoing manner, it is shown that an arbitrary choice of a standard threshold

will result in a loss of useful channel capacity. However, the careful choice of an optimum

threshold will lead to an efficient use of all the system capacity if certain conditions are met, as

will be shown subsequently.

To obtain more precise results than the upper limit expressed by Eq. (5-8), it is nec-

essary to include all the conditions under which errors are recorded. A message is correctly

indicated when the threshold value is exceeded only by the correct correlation output W o .and

not by any other Wk. Any other combination will result in an error.

Therefore, the probability of no error, given for a fixed magnitude of received vec-

tor Z, can be expressed as follows:

F(no e rro r/ILZ) = P (Wo>anS/IZI) PWk canS/Nzd K (5-9)

The probabilities are given as functions of IZI because it is necessary to compare all W ob-

tained by correlating the various possible signals with a single received signal. The average

probability of error is then obtained as an average of the probability of error associated with

each received combination of signal and random noise. Thus,

P (no error) =f PO (IZ) d Izl P (no error/ ZI (5-10)

In Eq. (5-9), the term in brackets is found (in accordance with the methods of Appen-

dix IV) to, be given by
cans 15-121

P (Wk<anS/IZI) Jn exp dWk

or
Ln "is

P(Wkc<anS/IZI) i J.0 exp jd (5-1 Ia)
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by change of variable.

The probability that W exceeds anS is not so readily expressed. However, a large

part of the difficulty may be avoided as follows: 2 K
Perror) -- 1-..J' p(IZI) dIZI [1- P(Wo<anS/IZDJ [1 _f (d ] (S-12)

n4S

P(error) P a + K dv (5-12)0 d 1 0aS4) d

Th irs emo h ihn Eq. (5-13),altrm novn irdcs othage probability thtf isdviules thanr an aneetd,

sne lonerrafuction ofse Iah Aistudry ofathe poabii ens itye dis o lnsotributiop W)hc ed

ieto h (W ruae) isuive ino Apedx. Whe2a, nei isy intuedtepoaiiyo ro eoe

Qo ~~exp -

P (error) J (< artS Pp (W I ) + dv (5-12a)

TZ

Thn firt ( te o ater ino p2  (13) is d ute ao th e probabilite valu in i less thae andad

deviaonrafntoofZ.Asud of theprb iitdesy distributioni N+2) hs o ag auso n 2 and o ' aswhheas

lie thn unaciyl theist ermh on te rightanrm of Eqh ile ber lsmanes scondtout

apoximWoately the extent tha KAeends ne.hei nrorue, the probability of error beves r

largle antori the tre r anget Fro <a. <0.8, one may write

00 exp(-jf) r

P (error) P--vK 2 (W) + o + p (I l d Z d (5-13)

a fan -Is 12

hes thee ai t ed in Eq. ( 5-13) is wa edili less th an s ulndt

otie lyssottnge ah aferagtialu of IZ I - A studsecondhinteoballstnceethis distribution, p W) hc ed

tooPis uitepeaisdgiveu is A eaen Valuen it for intrd aued, fn ol that prbbltyofror beo e

P(error) K ? (W , - + dd (5-14)

Ihn E apr imtousdn .q. (5-130) ps 0 so h year afrqulye ser , t rst sfrman mlditbu
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To gain still further insight into the meaning of this expression (but subject to the

conditions of K >> I and S << N), other substitutions as used in Chapter IV lead to the result

P (error) exIpfl. a2ZC'-T (I - -I) (5-16)

2 a 2 C'T L aCJ

The expression, subject to the same conditions discussed under the inequality (5-8),

affirms the fact that the probability of error may be made arbitrarily small with increasing T if

the ratio of information generated at the source to the theoretical system capacity does not ex-

ceed the square of the relative threshold coefficient a. This decrease of effective capacity is

made apparent by the appearance of a 2C in each place that C appears in Eq. (4-31).

B. The Optimum Threshold

As developed in the preceding section, the probability of error when a threshold cri-

terion of detection is used can be writtenOD coan anS- K
P(error) P 0 (IZI) d IzI P3 W/Z) dW : 1)4 Wk/IZ! dW (5-17)

The density functions P3 (Wo/ IZI) and P4 (Wk/ IZI) have not been used previously in this paper,

and they represent merely the results of differentiating with respect to the appropriate parameter

of the probabilities P(Wj>anS/IZI) and P(Wk<anS/IZI), respectively. To determine the optimum

value of threshold coefficient a which leads to the minimum probability of error, P (error) is

differentiated with respect to a, and the resulting function examined for zeros.

aP(error) J p IZ {j (Wk/ 1[4S  / kj P sdaa 0o [ l} d z  P4 (Wk/ ] - P3 (a nS }l

+[anS P 3 (Wo/zI)dwl K _f0 P4 (Wk/IZI dW P4 (anS) , (5-18)

which is zero iff:nS KJ
P 3 (anS)-0 p4 (Wk/ Z) dWk = P 4 (anS)K nSP 3 (W/ IZ) dWo (5-19)

Thus, a zero of Eq. (5-18) and a minimum of P (error) occurs when

P3 (anS) = P 4 (anS) - fanS P3 (Wi Izi) dW. (5-20)J..o P4(Wk/IZl)dWk

Since P 4 (Wk/IZI) is a modified normal distribution about zero mean, and P3 (Wo/IZI)
is distributed about a mean value nS, for all a between zero and unity, the ratio of integrals in

Eq. (5-20) must lie between 1/2 and 2. When n is large, the peaking of the distributions leads to

a ratio approaching unity. Thus, for large n, one may write

P3 (anS) KP4 (anS) (5-21)
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One may make use of the fact that the variance of variable W° is given by nS (N + 2S),

while that of Wk is nSN. To a first-order approximation, if the p's are represented by normal
distributions, Eq. (5-21) becomes

I_____ (anS -nS] 2 [ {aS 2 ]
&nS e(+ 25) ZnS (N + 2S) J = K _/_- ep 2nSN ,(5-2)

or O 2

- I x [ 21(NI,-S 25) " K - exp j ans] (5-Z2a)
VN .t 2S LN Jex _N L' +i -A

From Eq. (5-22a), it is evident that

(I-a) 2  a 2 2+ S
N +I2S - -lnK - N (5-22b)

The solutions of this equation are

N UN2 NF 2 N' if N l sl
a +* + + n + - )lnK + n + In i + . (5-23)

When n is very large (which, incidentally, is necessary if the normal approximation to the func-

tions P 3 and P4 is to be valid) and for S/N << 1, the solution becomes

a [IN l + + -.. I +n nK± ...+ - j , (5-24)

or

a N + -n- inK (5-24a)

When the indicated operations are carried out,

a L + .-L inK] (5 -Z4b)2' +1 np I

Under the conditions of K>> 1, and those outlined before, such that the approximations

l12 np ' C'T and InK - H'T, Eq. (5-24b) may be written

I " H1 (5-25)

This expression has appeared in slightly different form in the note by Golay,1 1 and is
the result obtained by all such optimizations of small signals detected by the threshold criterion

of detection. The important point brought out by this result is that if one is to obtain the maxi-

mum use of a given channel when threshold detection is employed (subject to the conditions listed

above for the validity of the result), he must adjust the threshold coefficient quite close to unity.

In fact, the difference between H/C and unity must be approximately halved by the difference be-

tween the threshold coefficient and unity for the optimum result. Equation (5-25) also illustrates

the fact that, if a channel is to be used to carry information at a rate substantially less than the

theoretical channel capacity, there exists a definite threshold for which the errors are a mini-

mum.

When the optimum value of a is placed in Eq. (5-16), the result is
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P (error) 1 eapI [ H Txi [j1 (5 -26)

It is emphasized that expression (5-26) is not valid for very near unity (and thus H/C near unity)

but is significant, however, for H/C of the order of one-half or so.

A further study of the effects introduced by the use of a standard threshold for corre-

lation detection can be made by postulating a highly idealized system of the following type.

A set of K + 1 vectors is arranged in n-space so that they are mutually orthogonal.

Obviously, n must exceed K. The radius of the hypersphere on which all K + 1 vectors termi-

nate will be IXj = ,nS. Under these conditions, a random orientation of the vector system in a

set of Cartesian coordinates of the n-space will cause the coordinate values to be measured by

numbers which very nearly (but not exactly) follow a Gaussian distribution with a variance S.

The coordinates are used to generate the K + 1 possible message waveforms.

As before, one of these vectors (called X0 ) is selected and transmitted, noise being

added in the channel through which transmission occurs. At the receiver, the received signal

X 0 + Y is cross-correlated with each of the K + 1 vectors X k, and the outputs are used in ar-

riving at a decision about which of the messages was transmitted. An error will occur in all

cases in which the noise component added to X0 is less than (a- I) 4iis (in which case lxo2 +
X 0 . Y <anS), or in which the component along any of the K other vectors exceeds a jH- (in which

case X k' X0 + X Y Y equals X k. ' Y > anS), or any combination of these events. By the method

of Appendix IV, if the noise vector Y arises from a Gaussian distribution, we may take the com-

ponents along any of the coordinate axes, or along any of the mutually orthogonal vectors, as num-

bers from the same Gaussian distribution. Therefore,

P (no error) = j()l dY p (Y) d (5-27)

[ f- )Ix 0

L -f p(Y) dY p(Y) dY (5-a)

The probability is the product of the probabilities of individual events because the coordinates of

the noise vector are independent.

Since

fXI p (Y) dY

should be quite small in practical cases, it follows that

P(error) 1- - [1 f(a p (Y)dj - Ix K p(Y) dY (5-28)

Again neglecting terms of the second order of smallness, Eq. (5-28) becomes

*This system and discussion is substantially the same as that appearing in a PROJECT LINCOLN
internal memorandum by the author, "Cross Correlation Thresholds and Channel Capacity," 10
September 1951.
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P (error) 1 p(Y)dY +KJ p(Y)dY (5-29)

When the optimum value for a is substituted (and large K and n are assumed), the form of

Eq. (5- 29) is fC- ( 4) 00 2
P(error) i exp -fdv + exp -4 dv , (5-30)2 L'- fZ_,( +, 1,L) 4 -

C7

The approximation

valid for large Q, can be used here when np is large. Then,

P (error) K [1 H 2

+ K [( ] exp[-}--(1 +-,)np] (5-31)

But K has already been assumed large, and if S << N so that 1/2 np= C'T, the expression becomes

[-L C'T~ I- 1j) exp [-+C'T(l + R) Z + HIT]

" erorwC'T (I - .) AITCT_ + (-2

orZ 
.P (error) 2 + , (5-33)

The expressions given by (5-3 1) and (5-33) are valid only when the threshold coeffi-

cient is optimized (and subject to the conditions listed). A comparison of these with (4-30) and

(4-3I) reveals two differences of primary consideration. One of these differences, the fact that

the ratio S/P appears in Chapter IV while S/N appears in the results just obtained, is easily

explained by noting that P = N + S includes the variation of the magnitudes of the signal vectors.

These vectors were of fixed length in the example just given. The other difference is the pres-

ence of the squared factor (1 - H/C) in the case of threshold detection while only the first power

of that factor appears in the case of maximum correlation detection. This means that, for the

same conditions of noise, capacity and information rate, considerably greater delay is required

in the case of threshold detection to obtain a given probability of error than when the maximum

correlation criterion is used.
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CHAPTER VI

NOISE IN THE AUXILIARY CHANNELS

Up to this point, the systems considered have been those in which some auxiliary

noiseless channels have been utilized to make the set of possible message waveforms available

at the receiver for cross-correlation with the received signal. Such systems are, of course,

special cases of a more general class of systems in which the auxiliary channels are also dis-

turbed by unavoidable additive noise.

The prime effect of such disturbing noise in the auxiliary channels is to introduce

some doubt as to precisely what it is that is being sought in the cross-correlation process at the

receiver. An additional uncertainty remains after a message has been received and the correla-

tion outputs obtained over that present when the auxiliary channels are noiseless. Because of

this greater uncertainty, it is expected that the decisions made on the basis of these correlator

outputs wil. oe more frequently in error than when the noise is absent. This is found to be the

case.

As in the earlier systems discussed, it is here considered that the message X has

been transmitted through the intelligence channel in which noise Y is added. Also, the set of

possible messages X is transmitted in auxiliary channels in which noises Y are added. It is
k k

assumed that the noises Yk (k = 0) are independent of noise Y
At the receiver, Z, the received signal, is cross-correlated with each of the set of

Zk waveforms representing the corrupted versions of the possible message waveforms. The

outputs resulting from the correlations are made the basis of a decision about which of the mes-

sage waveforms was transmitted.

At the receiver, the correlation of Z with Zk will yield

Z Zk--( 0 + Y)- + Yk)  '(6-1)

X 0 " X k + Y - (Xk + Yk) + X0 " k (6-la)

If the signal-to-noise ratio is p in the intelligence channel and S/Nk in the auxiliary

channels, there will again be an expected value nS in the correct correlator output, while zero

is expected in all the other outputs. Geometrically, as illustrated in Fig. 6.1, the components

of Zk that fall along Z will follow a Gaussian
ZZ j distribution with variance S + N k = Pk ' except

when k = 0. For simplicity, all Nk are con-

sidered equal in the discussion following.
------ Let P5 (Zz) be the distribution of the

components of Z 0 along Z. Note that Z z cor-
K Zresponds to X of the systems discussed in

Chapters IV and V.
Xk When the criterion of detection is that

of maximum correlation, the probability of errorFig. 6.1. Vector model illustrat-

ing noise in the auxiliary channel.
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takes the form

P(error) 1 P5(Z)dZ fzpW)dZl (6-2)

where Z' is the component of Zk along Z. Of course, Z. is the component of Z0 along 2.
Maximum correlation is used as an example for comparison with earlier results.

It is evident that the contribution to the outputs from the correlators that do not correspond to

the transmitted waveform will be a function of the signal plus noise power Pk rather than the

signal power S alone. This is true independently of whether the criterion of detection is that of

maximum correlation or exceeding a threshold. Consequently, the final result obtained for

noise added in the auxiliary channel can be extended readily to threshold detection by analogy.

The distribution P 5 (Zz) is peaked about its average value in much the same manner

as pI(Xz. This average value may be obtained as follows. The expected output is NS. The

average magnitude of ZO is ,nP . Thus, although Z 0 and Z z are not independent, the dis-

tributions of these quantities for large n are sufficiently peaked that, to a good approximation,

aveZ nS = - (6-3)
7 11_P p

InP

The behavior of the probability of error, again under the assumption of large n,

may be obtained by evaluating Eq. (6-2) at the average value of Z . Therefore,

ccexp--
P (error) K] dv , (6-4)

S 2, P.

1j P k

K P k  S2 (6 -4a)
"S - exp 2P I k6- [

F nS L

Again use is made of the approximations for p << I and K >>1 which are, respec-

tively, 1/2 np - C'T and InK H'T. Equation (6-4a) becomes

P (error) 1 '4 exp -C'T(--§--Z] , (6-5)
24 trCT L\ I P k - C1

I1 x LCI (6- 5a)

k

Note that for Nk = 0, S/P k = I, and Eq. (6-5) reduces to the result obtained in

Chapter IV see Eq. (4-31) . Furthermore, to obtain arbitrarily snmall probability of error,
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with increasing T, it is indicated that the ratio H/C should be less than the signal-to-noise

ratio in the auxiliary channels. The appearance of (S/Pk) C' in each place where C' appears

in Eq. (4-31) indicates that the effective system capacity is S/Pk times the theoretical capacity.

It may be expressed by stating that communication is possible, relatively speaking, to the extent

that noise is absent in the auxiliary channels.

*It is suggested that transmission of the "code book, " which is somewhat akin to learning, must

be accomplished perfectly if the information presented in that code is to be transmitted at a rate
equal to the capacity of the channel. Also, since it is evident that some form of auxiliary chan-
nel must be used for what amounts to code-book transmission, the total equivalent capacity can
never be utilized perfectly.
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CHAPTER VII

THE EXPERIMENTAL STUDY OF PROBABILITY OF ERROR

A. The Modified Theory for K = I

In the experimental verification of the theoretical material presented in this paper,,

a relatively simple physical system was constructed. In this system, one possible message

waveform is generated in the transmitter and :sent through an auxiliary channel to the receiver.

The waveforn is also sent through the intelligence channel, modulated in an on-off manner, and,

in the process of transmission, disturbing noise is added. A simplified block diagram of the

system is shown in Fig., 7. 1. and a detailed description of the actual system follows in a later

section of this chapter. The system :allows for the possible introduction of ia disturbing noise in

the auxiliary channel also.

Transmitter Noise Receiver

t LFig. 7.1. Simplified block diagram
of the binary-choice system.

(Auxiliary Channel)

It is understood that in this system K + I = 2, or K = 1, the alternative signal to the

waveform generated at the transmitter being a zero or null waveform corresponding to, the key-

up position. In the experimental system, the on-off indicator at the receiver operates to indi-

cate "on"' whenever a preset threshold is exceeded by the correlation receiver.

Certain simple modifications of the analysis underlying the general case for large

K are required to theoretically describe this NOMAC system. Here, an error is made when

either the correlation for the key-up position exceeds the threshold or when, for the, key-down

position, the threshold is not exceeded.

Let the threshold be set at Xt. On the average, the probability of error is given by

P(error) = P(on)[P("X2 + liY 1 <X*)] + p(off)[P(XI Y1 > X . (7-1)

This equation can be expressed as the average over all 'XI of the probability of error when iX;

is fixed. Thus,

o= exp ep I- N 1 I l
P(error) PO(X!) d lxi P (oe) c d,1 [ PN !f dj

(7 -2)

If the system is being used efficiently. the symbols "on" and "off" will occur with equal proba-

bility. Then,
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F2
(IX') ex LZ x0 i ' ______ I IP(error) o(ZXId xl 12 dv +j Xxlx d . (7-2a)

A choice of X*, the threshold, is made to minimize the probability of error. It follows that the

solution of

a P(error) = 0 (7-3)

ax0

is taken for the threshold. A solution of Eq.(7-3) is a solution of

I exp - exp ,X- 2 (7-4)
2VYIN lxi Z-49; N ;X 2NN -XI

I liz VX2  . L ZN :XiZ

or

1xl 2 -x * : x *, x*(JL C7-5)

where X! is fixed.

The threshold value as considered here is a constant and not a function of lXi. To

obtain that constant, X4 is averaged over all XI and the result nS/Z is obtained- This is the

constant value of optimum threshold used. Then,

(IX) d IX exp-6
P(error) do 7I-6 ) d

o r f0/ ns d x
P(error) = P (Ix!) I erfx S j . (7- 6a)

The probability distribution function po(IX) is the chi-squared type discussed in de-

tail in Appendix I1.

If the substitution IX: = a 4Ti_ is made, Eq.(7-6) reduces to a more convenient form

(in which Stirling's approximation for P (n) has been used), namely.

P~rrr)= ]rFn-Iep[ n 2 ]l n~p

Po(error) an exp n( I)] erf da (7-7)

Erf(Q) is defined here as

4f exp[-4dt

Another form of Eq.(7-7), using the nomenclature of Fano, reads

P(error) =,rf a exp[- a( A erf da (7-7a1
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The argument of the error function is then the square root of the modified ratio of the signal en-

ergy to the noise power per cycle.

Curves of the probability of error for several typical values of time-bandwidth prod-

uct and signal-to-noise ratio are given in Fig. 7.2. These results were obtained by numerical

integration of Eq.(7-7), and the method as well as tabulated results are shown in Appendix VI.

The probability of error is seen to be primarily a function of the product np . and is plotted as

a function of that parameter in Fig. 7.3. Over the range of values of np for which the plot is

given in Fig. 7.3, the deviation from the single line is less than the line width of the curve for

n = 1000 when n = 100 and more. Where its values differ from the other curve by an appreci-

able amount, the separate curve for n = 10 is shown.

-1 , 05 n=100 n=1000

10 xO

0z1

-2 0.4 nnlO =10

-3-o3,o

0X4
n_ -iOQ o

0 
0 _2

-6' 0.I1
n 105 n zl104 n 103  n=iO

710" A-7" ' 10-1 1 5 0.1 02 0.5 I 2 5 I0 20 50 100
SIGNAL-TO-NOISE RATIO P OUTPUT SIGNAL-TO-NOISE RATIO np

Fig, 7.2. Probability of error as a Fig. 7.3. Probability of error as a
function of signal-to-noise ratio (p) and function of np
system bandwidth ratio (n).

When it is recalled that np represents the signal-to-noise ratio at the output of a

correlation detector (as well as the ratio Es/N 0 ), the significance of the fact that the probability

of error is primarily a function of this output ratio becomes apparent. It justifies the assump-

tion that the noise component of the output signal is Gaussian. because the curve as a function

of np is essentially that approached by Eq.(7-7a) for n large, which is in turn the error function

evaluated at a = 1. The error function is, of course, expressed in terms of the Gaussian or

normal distribution.

B. Description of the Equipment

In its physical form, the equipment required to investigate the validity of the theoret-

ical results consists of five panels mounted, together with power supplies, on a single relay
S 3

rack. In addition, the Davenport probability-measuring equipment was used to make actual

measurements of the results experimentally. The complete experimental setup is pictured in

Fig. 7.4.

On the relay rack containing the NOMAC system (at left in the picture), the following

are mounted (from top to bottom): low-voltage power supply, random (noise-like) signal source,

side-band generator (transmitter), the simulated channel, the correlation converter, the
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Fig. 7.4. Photograph of the experimental equiipment.
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integrator-detector (receiver), the channel-noise power supply, and the receiver-transmitter

power supply. The interconnection of components other than power supplies is shown in the

block diagram (Fig. 7.5).

The schematic diagram of the random-signal

Random- source is given in Fig. A7.2 of Appendix VII. Essentially, it

Signal is a filter amplifier with a bandwidth of 5 megacycles and a
Generator

midband frequency of 35 megacycles. The amplifier, featur-

ing an 8-pole Tchebychef frequency response, was designed

Transmitter and built by R. Price and W. McLaughlin of Group 34 of

N PROJECT LINCOLN. The gain of the 8 stages (6BH6's) is

I sufficient to amplify the thermal noise and tube noise of the

Chane first stage to an output power of about 3 milliwatts of white

e I i noise into a 75-ohm load impedance. The noise output 3 Mc

Correlation from the midband frequency is down 50 decibels or more

Converter from the level within the pass band.

The side-band generator or transmitter is shown

schematically in Fig. A7.3. The signal input from the random-

Receiver signal source is mixed with a 5.35-Me signal from the crystal-

controlled local oscillator. Separate 2-stage band-pass am-
Fig. 7.5. Block diagram of

the experimental system. plifiers select the resulting side bands at -9.65 Mc and 40.35
Me. Each of these stagger-tuned amplifiers is adjusted to

an effective bandwidth of 2.0 Me, and fed through cathode followers to the simulated channel.

The resulting side-band spectra have rounded corners so that the transition from channel noise

to channel-plus-signal noise will be a smooth functiohi of frequency, and thus less apparent to an

unfriendly receiver.

The simulated channel consists of attenuators for the two signals and for the noise

added in as the corrupting or disturbing noise. Also, an adding circuit is used to obtain the sum

of the proper amounts of random signal and contamination noise. In th first part of the experi-

mental work, the 40.35-Mc signal is connected directly to the correlator (as the reference sig-

nal' to simulate a storage process which makes a noise-free version of the signal available for

cross-correlation. In the second part, noise is added in the 40.35-Me channel also, to simulate

the conditions when both reference signal and intelligence signal must be transmitted through a

noisy medium. The schematic diagram is shown in Fig. A7.4. The two sources of disturbing

noise are modified radar IF strips, originally built for the M.I.T. Radiation Laboratory. When

operated at full gain and with no input, these strips have a noise output of approximately one

volt.

The correlation converter comprises a pair of wide-band RF amplification stages.

one each at 29.65 Mc and 40.35 Me, and a 6AS6 used as a multiplier. The choice of the 6AS6

was made because the same bias on grids one and three, namely. -2.5 volts, places the tube in

an operating range leading to a minimum of distortion in the multiplication process. Thus the

biasing problem was simplified. The output of this tube is fed to a two-stage 10.7 Mc IF ampli-

fier using conventional components.
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The frequency of the IF amplifier is chosen as follows: when the signals at the grids

of the 6AS6 are n, (t) cos [u l t + 61 (t) ] and n. (t) cos [wt + 6 2 (t)] , the product +1 2 (t) is given by

q1(t M = nl (t) n2 (t) -+ cos[(w2 - .l) t + o(t) - 01 (t)] + cos [(W + W t + 62 (t) + 6 (t)]

(7-8)

Now if n and n as well as the phases 6 and 0 are independent, (n,(t) and n,(t) have zero

average), the average of nln 2 is zero and the phase of the term at frequency w 1 - 2 is random.

However, if n = n2 and 01 = 82 , there is no random phase in the difference-frequency term and

the product n1 (t) has an average proportional to the power (or variance). Thus, in the experi-

mental model, an output of the multiplier at the difference frequency of 10.7 Me should occur

whenever the two side bands generated in the transmitting process are applied to the two signal

grids. Figure A7.5 is the schematic diagram of the correlation converter.

The schematic diagram of Fig. A7.6 shows that the integrator-detector is merely a

double-conversion superheterodyne receiver using a crystal-controlled oscillator at the first

converter and a Collins Type 70E-15 oscillator for the second-converter oscillator. The IF fre-

quency is 455 kc and, with a crystal filter at the same frequency, integration bandwidths of the

order of 80 cycles are obtained. In the broad-band (crystal out) position, the bandwidth is 4000

cycles. The former bandwidth is typical of the requirements for teletype circuits, wnile the

latter is adequate for speech communication. Filters, as integration devices, are discussed in

Chapter VIII.

C. Discussion of Experimental Results

An examination of Eqs.(7-Za) and (7-6) reveals that, for the conditions imposed, the

probability of error for "on-off" signaling is the same as the relative frequency of errors in re-

ceiving only "on" signals, since the individual integrals contribute equally to the probability of

error. This somewhat simplifies the experimental procedure in that measurements or counts

made with the signal present in the intelligence channel can be taken as the desired probability

of error.

The probability-distribution analyzer developed by W. B. Davenport, Jr. was used to

count the relative number of times the output signal exceeded the threshold value which was set

at one-half the average output value. The difference between this relative count and unity was

taken as the experimental probability of error.

Curves were taken with the signal-to-noise ratio at the input as the independent vari-

able, and various values of the signal-to-noise ratio in the auxiliary channel as a parameter for

the two values of bandwidth ratio. When the auxiliary-channel signal-to-noise ratio is infinite,

the measured values of probability of error should check the theoretical probability of error as

obtained by numerical integration and presented in Fig. 7.2. When noise is added in the auxiliary

channel, the effect as predicted in Chapter VI should be observed. This effect is to change the

effective value of np in the intelligence channel by the factor S/(Nk + S). This means the theoret-

ical probability-of-error curves should be shifted by an amount corresponding to that factor.

The curves in Figs. 7.6, 7.7, and 7.8 show the results of the experimental measure-

ments. Figure 7.6 shows the probability-of-error measurements made with the wide-band filter.
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The value of n calculated for this filter is 615, based on the equivalent noise bandwidths of the

input (RF) and output (IF) filters. The measurements were made for probability of error less

than 10 per cent which corresponds to an output (postcorrelation) signal-to-noise ratio of about

+8db. This upper limit was established more or less arbitrarily because of the type detection

used, i.e., envelope detection, after multiplication and filtering. The level of 8db represents a

signal-peak-voltage to rms-noise-voltage ratio of about 2.5, for which the number of excursions

of noise voltage which exceed the peak signal voltage is of the order of one per cent if the noise

is approximately Gaussian, and the portion of time spent by the combined signal and noise volt-

age in the curved portion of the detector characteristic is correspondingly small. Figure 7.7

shows similar results for the narrow-band filter which has a measured n of 31,700. In prac-

tiwe. this filter is so narrow that the drift of the crystal-controlled oscillators is a serious prob-

lem, a, d readings are difficult since all tuning and level settings must be corrected before a

count and then checked for drift after the count. For this reason, only one additional curve for

noise in the auxiliary channel was taken to show again the predicted displacement. It is to be

assumed that the effect shown in Fig. 7.6 would have appeared here also for other values of auxil-

iary-channel signal-to-noise ratio.

Figure 7.8 shows the results of the earlier figure, plus some additional counts, as

a function of "effective np," where the effective value of np is defined as n (S/P)aux. The com-

posite theoretical curve is given for comparison of theoretical with experimental results.

The spread of the points in Fig. 7.8 is attributed to two principal sources of error.

The ability to match signal and noise powers was limited by the resolution of the attenuators,

which had a range from zero to 101 decibels attenuation in steps of one decibel. The accuracy

of components used in the attenuators was 5 per cent, but in general the accuracy of any given

step was considerably better than that. However, the absolute error introduced by the larger

steps was observed to be as much as 0.4 decibels.

12

n r 615 (allcurves)
,0 (S)aux= c

retiecal curve for (.L)Gux=

N S

8 \{ )ou~l \ s, u

-6 0

Z
()aux 404

0
-22 -0 -lB -16 -14 -12 -10 -8 -6 -4

SIGNAL-TO-NOISE RATIO p (decibels)

Fig. 7.6. Experimental probability of error vs. signal-to-noise
ratio, wide-band integrating filter.
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Fig. 7.7. Experimental probability of Fig. 7.8. Theoretical and experimental
error vs. signal-to-noise ratio, narrow-band results of probability of error as a function
integrating filter, of effective np.

A second source of error was that of reading the meters used in setting output levels.

This process was made more difficult, since the output signals contained noise with significant

low-frequency components.

The average of the observed results taken experimentally shows a shift to the left of

approximately one-half a decibel. Perhaps the principal contribution to this shift (amounting to

some 1Z per cent) was the error in measuring the bandwidth of the input signals at the correlation

receiver. In order to avoid such possible sources of error as saturation in amplifiers and Miller

effect, the measurements were made at low level from the frequency-response pattern appearing

on an oscilloscope. Under this condition, the noise output of the amplifier was comparable to the

amplitude of the response pattern. Consequently, the amount of error apparently present does

not appear to be inconsistent.

Still another source of error undoubtedly contributed to the spread of experimental

results and to the relative increase of the probability of error for low values of probability. The

presence of high-intensity radiation from various sources (e.g., radar) in and around the labora-

tory was observed to cause distinct errors in the counts made by the probability analyzer. An

attempt to minimize these errors was made by taking counts at times when most other laboratory

functions were closed down. The errors due to outside sources were kept small enough to be

consistent with other experimental errors in the range over which measurements were taken,

but they were increasingly significant at very low probability of error, and, in fact, set a prac-

tical lower limit to the range of observation.

It should be mentioned that each point plotted represents an average of several

counts, and, where two or more points are plotted in Figs. 7.6 and 7.7 for a given condition, they

represent readings taken on different days and under possibly different conditions of laboratory

temperature, noise level, and equipment adjustment. They are plotted separately to indicate

the reproducibility of the results.
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CHAPTER VIII

RELATED TOPICS TO NOMAC SYSTEM DESIGN

A. The Effect of Nonideal Integration

The validity of the theoretical results thus far obtained is limited by the accuracy of

the initial assumptions, as, for example, true Gaussian amplitude distributions, ideal short-

time integration, distortionless multipliers, and rectangular pass bands, However, the effects

of certain of these factor's being less perfect than assumed can be ascertained, and to some ex-

tent quantitative corrections can be made. Since experimenters have found that most natural

noise sources (thermal agitation, shot noise, etc.) do have a Gaussian amplitude distribution at
14

least for amplitudes less than about six times the standard deviation, it seems evident that, if

physical systems are operated in such a manner that saturation and/or cut-off effects may be

neglected, the assumption of Gaussian noise seems well founded. Considerably larger differ-

ences may occur, however, if the integration method (filtering) is nonideal or if the multiplier

used in the correlation process introduces appreciable distortion.

To investigate the effect of nonideal integration, it will be assumed that a correlation

output W results from the sum of weighted components w. . Here w i = xizi is a product com-

ponent of the type obtained when the functions X(t) and Z(t) are represented in the form indi-

cated by Eq. (1-6). The results are limited to low-pass functions as derived, although the final

result agrees with results obtained for band-pass functions when viewed from a different ap-

proach.
4

The weight associated with each w i is h i , and the h's are constants and independent

of the w's. Thus
n

W= . w. (8-1)i=l 1

Obviously, if all h i equal unity, the W resulting is that discussed earlier under the

assumption of ideal integration.

Now,

WZE{SI hil S ZE {hi} (8-Z)
i - i

=W Eh i  (8 -Za)

Similarly. w E {~ i ~ 8-3)

- S S- hih E {wiw.} .(8-3a)

i 3

But w- is independent of w. for itAj, so that one obtains
I2

W 2: F hih wii ,6
i + P - 6( wi 8-4)

where 6 is the Kronecker delta.
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From the knowledge above of W and W , the variance a- 2 may be obtained. Thus

= W = 2 h.h. W 0 - 6 )W -w. -Z h.h , (8-5)W= i j I i 1 1 i j 1 j

h. 
2  Zh2- [t2 - 1 = a Sh (8-6)Si I w i 86

Again. Eq.(8-6) is seen to reduce to the case presented earlier when all h. equal unity, i.e..

ideal integration.

Since the errors in the systems considered here are caused by fluctuations about the

average value of the output, the ratio of importance is

W 7 h = n + 1, (8-7)

nII

(because an rms value is never less than the average value). But the term on the right is the

result obtained with ideal integration. Thus, there will be more frequent errors if nonideal in-

tegration is used.

To apply this result, the probability of error expression Eq. (4- 30) is examined.

Here
K FP- nSP (error) - exp Pn

2In this expression S is~ a-wand the average XVis given by S vniP. If, instead, the values for

a- and W that would result from nonideal integration are substituted, the expression becomes

22P (eror K h' S (I'hi)-

----- S exp (8-8)
4h. hh.

1 I

The ratio (Eh 1i
2/Sh- appears twice and by definition will be the effective n. Since n is twice

the time-bandwidth product, the effective n is thus defined in terms of ZTW (this W is band-

width), where T is the effective integration time. It follows by definition that

(mi)

T h 2W (8-9)

If the approximations nS/2N = C'T and InK = H'T, valid for K >> I , n >> 1, and

S << N are used here, as in Chapter IV, the expression for probability of error becomes

I F .
P(error) - 1 exp LC'r + HI'T , (8-10)

2 C'T U
or

P(error)- exp C, (IT T 1--- (8-1Oa)

2?t(-; C'T T TyiCJ
T I- V - I
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Here (T/T)C' appears in each place where C' appeared in Eq. (4-30). It is interpreted as a de-

crease of effective system capacity corresponding to the factor T/T which will never exceed

unity, since n h)

nn: h".
i=l I

is less than n. This in turn is true since the time devoted to signaling must be at least as long

as the time devoted to averaging the correlated signal.

The integration time can be obtained from the impulse response function of the inte-

gration filter. One notes that the weights hi themselves are values of the impulse response

function at time intervals At 1/Zw. Therefore

.h (-) (8-11)
1 i

where h(t) is the filter impulse recponte. Furthermore, %h (1/2w) is given approximately by

2W h (t) dt

Therefore, the effective integration time is given by

W t ht d] [f h(t) d]Z (-12)
T T- T

h (t) 2 dt h (t)& dt

Equation (8-12) is based on the assumption that h (t) is zero for all t greater than

T. This implies that -T < T. Again, it is noted that, for an ideal integration function h (t) = 1

for 0 < t < T, and zero elsewhere, r = T, and the result is the same as that obtained in Chapter IV.

Equation (8-12) may be manipulated in the following way: the difference between the

integral with upper limit T and upper limit w should be zero (or at least negligible).

Then

If 0h (t) t2H(o2[fh" t} - S11()2" , (8-13)

foh (t)Z dt f IH(%) I' dc

or

- 0 11(o) (8-13a)

f IH (f)12 df

This is obviously the reciprocal of what is defined as the effective or noise bandwidth. Thus

- (8-14)
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The noise bandwidth Af is defined for double-sided spectra (defined for -0 < f <no). Thus, the

input noise bandwidth, since rectangular channel pass bands are assumed, is 2W . This means

n-W (8- 14a)

-Ar
the ratio of channel noise bandwidth to integrating filter noise bandwidth. This result is obtained

from a different approach in Ref. 4.

B. The Effect of Distortion in Multipliers

The correlation process inherently implies multiplication, yet electronic multiplica-

tion of two time-varying parameters is not easily accomplished. Probably the simplest type of

electronic multiplication is that which takes place in the conventional converter stage of a super-

heterodyne receiver, and is the type used in the correlation converter of the experimental sys-

tem.

The first-order analysis of tubes of the type used as multipliers is that the output

current is the product of two quantities, a + fl(t) and b + f2 (t) . The result is, of course,

ab + bfI(t) + af 2 (t) + fl(t)f2 (t). The constants a and b as well as the components bfl(t) and

af 2 (t) may be separated from the product f1 (t)f 2 (t) by band-pass filtering, if fl(t) and f 2 (t)

are functions occupying distinct frequency bands. Thus, in view of the elementary analysis, the

converter-tube multipliers are as good as the filtering used to separate the desired component

from the undesired ones.

However, a more general approach considers the effects of distortion in the multi-

plying process. In general, the time function of the output may be expressed by the summation

E 1t)= z J af
1 (t)f(t) (8-15)

i=O j=o 1

The p(t) thus obtained is, for example, the plate current of the converter tube to

which fl(t) is applied at one grid and f? (t) is applied at another. It is further assumed that the

spectra of fl(t) and f. (t) do not overlap. The term yielding the desired output is that associated

with all, and in particular, one of the two side bands - say, that at the difference frequency -

is isolated by filtering. Thus, the desired output is

Pd (t) = -allf (t) f (t) (8-16)

The products of distortion that lie in the product-frequency band are the only ones

that will lead to errors in the results. How these occur and their relative significance can be

obtained by considering as typical functions those defined by

fl(t) = x I cos w1t; f2 (t) = x 2 cos Wt . (8-17)

Then

[cos ,t]rr= exp [-rwlt]k~o rCk exp [Zjkult ]  (8-18)

and
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[OS Wfl = - exp. [-sW Zt]1 r sCh exp [I Zh, 2 t] (8- 18a)

From these, r s

[cosw qr Eoswatl5  - s rCk sCh eap [it (Zk-r) w i (Zk-s) w2 3. (8-lab)

Now, if the filtering is such that only the component at frequency wi - W lies within the pass

band, only those terms for which 2k-r = I and 2h - s = -1 will be passed by the filter. For

these conditions,
r+ I s-ik=2 h=- 2 (8-19)

Therefore, the component at the difference frequency that will appear at the output of the filter

will be

rc(r+l)/2 sC(s- _/2
2 rsl cos ( 1 -u 2) t .(8-20)

2 r+s- 1 2

It is noted that (r + 1)/Z and (s - I)/a must be integers, and that consequently r

and s must be odd integers. Furthermore, because of the symmetry of the binomial expansion,

sC(s I12 C(s+l)/ 2 and the latter may be substituted in the given expression for greater

symmetry. Thus, where the functions cos wIt and cos w2 t differ by a third frequency not har-

monically related to either of the other two, the expression for the portion of the product func-

tion appearing at the output of the filter is

o 0o iC (i+ l)/ ?- jC U+ 0/ 2
,o(t) = Z . X - -t (8- )

i=l j- I i j  i+j-1 1x2 1  -2)t

Here x1 and x Z are the constants by which sinusoidal terms cos w1t and cos w2t are multiplied,

and the expression (8-Zl) shows the contribution of digtortion terms in a converter-multiplier

using filtering in the output.
As thus derived, x t and x. may be thought of as quasi-stationary coefficients -

that is, x1 and x2 may vary with time if those variations are slow compared to the frequency

representing the filter bandwidth. Obviously, this leads to contradictions if the signals being

analyzed are limited in their fluctuations by the response of the filter. However, the exact

analysis is sufficiently more difficult to justify using expressions such as (8-al) as a guide to the

effects of multiplier distortion.

It is noted in passing that the coefficients aij are related to the coefficients of a Tay-

lor expansion by the expression

I E)i+j W t (-2

j af (t)i afZ (t)J It=t o

from which one obtains

1[ff(to + t), f2 (to + t)] = a 0 0 + a0 1 f (t) + a1o fl(t) + ... (8-23)

Experiments conducted by R. S. Berg and B. Eisenstadt (as yet unpublished) have
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shown that, for a reasonable choice of tube operating point, most converter tubes tested had con-

tributions due to a 3 1 and a 1 3 terms 40db or more below the desired a11 terms. Higher-order

terms were found to be appreciably smaller.

Therefore, it is found that (3/8) a 3 1 < .03 (1/2 a l l ), where the coefficients 3/8 and

1/2 are the values obtained from Eq. (8-20). The numbers a.. are, of course, those that might£3

be obtained from an exhaustive analysis of the static characteristics of the converter tube. It

is further noted that the effective values of the terms of 6th order are (5/32) a 5 1 , (5/32)a 1 5

and (9/32)a 3 3 . Since the a:'s themselves represent 6th order derivatives of rather smooth

tube characteristics, they are quite small, and will be neglected along with all higher-order

terms in the discussion that follows.

If it is, assumed that the a 3 1 and a 1 3 terms are of about the same magnitude, it fol-

lows that the average output W is given by

- n r33 3 1
W £ E I I +-a XY + J I-Y."aI (8-21)

t= [i 413 1i 4 31 a

From this, it is seen that, for x and y independent, W is zero, but for x and y not independ-

ent, the average output of the multiplier is increased by the distortion terms and, in particular,
4

if x = y, the increase is about d - x . The d used here is the measured distortion coefficient

(a 3 1 4 a 1 3 ).

A case of greater interest, however, is that arising when y is the sum of an inde-

pendent noise and a part of x. Thus, y becomes y + ax. Here the ratio of (ax) Z to Y is the

familiar S/N or p.

If the magnitudes of x and y are about the same, as is desired in practical cases,

the substitution of these values into Eq. (8-24) (for p << 1) will yield

S S [1 + 6d e(8-25)
-2

where e is- the mean-square grid signal voltage applied to the tube.

In a similar manner, involving a good deal of algebra that is omitted here, the var-

iance of W is found to be

. 2n N 1 + 12d e( +-P 8-26)

The ratio of the standard deviation to average output in the absence of multiplier dis-

tortion is found to be N/nS or (Es/N . Here, it is seen that the ratio becomes

__" ____ [1 + lZd e (1 -p

)actual j= ideal [I + 6d e( ' (8-2-7)

in which p<« 1 and eg is less than unity. Under these conditions, the effect of multiplier dis-

tortion is kept quite small, and may be ignored in the final results, at least where the assump-

tion of reasonable operating point and attendant value of d about 0.01 is valid.
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CHAPTER IX

CONCLUSIONS

The results thus far given are summarized as follows. From the theoretical point

of view, it has been shown that NOMAC systems are members of a class of optimum communi-

cation systems when the noise is considerably larger than the signal. NOMAC systems deliver

to the user of the communicated information a choice made by the receiver from the set of pos-

sible transmitted symbols. The class is optimum in that the symbol thus chosen is, with prob-

ability approaching unity, the most probable (a posteriori) of the symbols that might have been

transmitted.

The fundamental parameter limiting the performance of these systems is the ratio

of signal energy to noise power per cycle Any combination of bandwidth ratio (or n = ZTW) and

signal-to-noise ratio leading to the same ratio Es/N is capable of substantially the same per-0
formance, within the limits of signal-to-noise ratio less than unity and bandwidth ratio much

greater than unity. In particular, small signal-to-noise ratio may be offset with large band-

width ratio, regardless of how small the former might become.

It is shown that, if the decision made by the receiver is based on maximum correla-

tion, for information rates not exceeding the channel capacity, the per-unit equivocation may be

reduced to any desired value by allowing sufficient delay (coding time).

On the other hand, if the detection criterion is that of exceeding a threshold, an

equivalent loss of channel capacity is occasioned by an arbitrary choice of the threshold. Even

when the optimum threshold is used, a delay an order of magnitude greater than that required

when the criterion of detection is maximum correlation is necessary to obtain the same per-unit

equivocation. The compensation in favor of threshold detection is the reduction of equipment

complexity in the receiver performing this type of detection.

An important disadvantage is connected with the results just given. This disadvan-

tage is the stringent requirements of synchronization and storage associated with ideal cross-

correlation, in which prbcess copies of each of the possible message waveforms are available

for correlation at the receiver. If it is assumed that storage facilities do exist at the receiver

capable of storing the possible signals, the ease of using random samples of noise to represent

the transmitted symbols is lost, and the problem of time synchronization to enable correlation

to be performed at the "r = o" point of the correlation curve is one of major proportions.

It is shown that, if transmission of the reference copies of the possible signals as

well as the intelligence signal is resorted to, there is a loss of effective channel capacity (or

effective ratio of Es/No) corresponding to the ratio of signal power to signal-plus-noise power

in the auxiliary channel or channels. This use of auxiliary channels implies, in addition, an

expenditure of at least twice the bandwidth used by stored signal systems. To its advantage,

the so-called "two-signal system" is free of the synchronization problem, and makes possible

the use of random samples of currently generated noise as symbols.

An additional apparent disadvantage is the "self-noise" that results from the short-

time auto-correlation of noise signals. It is only an apparent fault, however, in that this
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component of noise is (1) small compared to other noise for small values of channel signal-to-

noise ratio, and (2) precisely specified by the knowledge of the waveform being correlated (which

is assumed) and thus could (with sufficient equipment complexity) be eliminated.

One version of the stored signal type of NOMAC system has been suggested by Fano. 19

It is a variation of the matched-filter technique of North, Middleton and Van Vleck, and seems

sufficiently promising to merit further investigation. This system apparently solves the syn-

chronization and storage problems simultaneously at the expense of somewhat greater per-unit

equivocation. A complete introduction to the method is found in the reference cited. 19

From the practical point of view, it is demonstrated that laboratory models of

NOMAC are easily realized in comparatively compact equipment. This is partly a result of the

use of converter tubes as multipliers, which are shown to contribute insignificant error when

properly used. Also, the use of simple filters as integrators is shown to be feasible. While

the per-unit equivocation is increased by the reduction in effective integration time (delay) when

filters are used to perform integration, it is felt that the disadvantage is compensated by sim-

plicity of equipment.

Much remains to be determined about the properties of NOMAC and related commun-

ication systems. It is recalled that all the results reported here, theoretical and experimental

(as far as practicable), are given for but one type of channel disturbance - that of additive white

Gaussian noise. How these systems will behave in the presence of other noise effects, or when

they are subject to multipath propagation, remains an important problem for further investiga-

tion.

Also, a detailed study of combinations of various modulation methods and random

carrier signals is recommended. For example, a frequency-modulated random carrier has

been tried in the laboratory with considerable success, and obviously merits extensive investi-

gation to determine its applicability to secure voice-communication links.

*Suggested by R. M. Fano, I1 June 1951.
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APPENDIX I

PER-UNIT EQUIVOCATION AND PROBABILITY OF ERROR

If H represents the entropy of the information source and Hx/z is the equivocation

or remaining uncertainty inherent in the channel, the per-unit equivocation is defined as

Hx/z

P.U.E. - (Al-I)
H x

For systems of the type considered here, H x = log (K + 1). The equivocation is

given (see Ref. 5) by

Hx - P(z) Z P(x/z) log P(x/z) (Al -2)
x/Z ~z z

Expression (A 1-2) is interpreted to mean the average over-all received signals of the uncer-

tainty represented by the a posteriori probability distribution following reception of a signal.

For the purposes of calculation, the a priori probability of any one of the possible symbols is

taken as I/K + 1. The a posteriori probability of the indicated symbol is (I - p), where p is the

probability of error, and the a posteriori probability for each of the remaining K symbols is

taken as p/K. The equivocation then becomes

Hx/z=- (1-p) log (l-p)+plog_ (Al -3)

1.0

0 1

0

-

lax: - 'K "31

C 'lO1 - 5 -_ - K 1 0 23

1 0 - 6

10-6 10.5  10.4  10-5 10-2 I0 "' 0.5
P (error)

Fig. Al.1. Per-unit equivocation vs. prubability of error.
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The resulting expression for the per-unit equivocation, which is the upper limit that

can be associated with any given probability of error, is then

(p - 1) log (1 - p) - plog p

P.U.E . = log K + 1 (Al-4)

An expression for P.U.E. when p becomes very small (the practical case) is as

follows.

lg e + log K

P.U.E. p log K +I p  (Al-5a)

Plotted in Fig. Al.1 and tabulated below are typical relations between P.U.E., p.

and K.

TABLE Al- I

PER- UNIT EQUIVOCATION
Corresponding To Probability Of Error When Receiver Chooses

Most Probable Message As Message Transmitted

K 4 1 2 4 32 128 1024 1048576

log K + 1 z 5 7 10 zO

0.5 1.0 0.877 0.695 0.643 0.600 0.555 0.500

10- 4.7p 3.14p 1.93p 1. 6 7p 1.47p 1. 2 35p p

10 8.lp 4. 8 4p 2.61p Z. 15p 1.81p 1.41p p

10- ll.04p 6.31p 3 .2 0p 2. 5 7p 2.1Op 1.55p p
- 4

10 14.72p 8. 15p 3.93p 3.10p 2.47p 1 .74p p
10 18.00p 9.81p 4.60p 3 .5 8 p 2.80p 1.90p p

10 21. 30p 11.45p 5.26p 4.05p 3.14p Z.0 7p p
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APPENDIX H

THE DISTRIBUTION OF VECTOR MAGNITUDES

Given: the probability density distribution for x, namely,

p (x) = I exp . (AZ- I)

Now 1X1 2  x2, so that

P(x ) L S (AZ-Z)

and, where q (t) is the characteristic function related to the distribution,

@(t) -j exp~itx~ ] 1p(x 2 ) dx~ , (A2-3)

1[i - ZiSt]- , (AZ-4)

then n

0 y(t) =[0,(t)] n  [I ZiSt] 2 (AZ-5)

and
P0 (Ix(12) = I exp[-itx ] 0o' (t) dt (AZ-6)

Po( x l ) = I xn-n expn - l (A2-7)
2n

(2s), fl(a

The distribution (AZ-7) may be derived in another way which reveals significantly

what is involved in p 0O(IXI) .

First, the probability density distribution for a given point in n-space is given by

the product of the probability density distribution for each of the Cartesian coordinates (the co-

ordinates are independent). Thus

p"(X) p (X1 ) p (X? ) ....... P (Xn) (AZ-8)

n

1 2 r 25 ad

( e-) z (AZ - 10)
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In (AZ-10), lXi is the squared magnitude of the distance of a point X from the or-

igin, and the probability density of the point is seen to depend only on this distance.

The probability density distribution for the distance I X I is the integral of p" (X)

taken over all points that lie distance IXi from the origin. Since I X1 is constant in the inte-

gration, po (1X i) is the surface area (n - 1 space) of the hypersphere of radius I Xi times p' (X).

The surface area is in turn the rate of change of the volume of the hypersphere with respect to

the radius at that value of radius.

The volume of a hypersphere in n-space can be obtained as follows.

lxi f x14 rlixi4 -z, t
" x1=vdV:: t'" j A? .i - i14 d4 . (A2-Il1)

Let

1_ x1 2 - s_ n-t

then
2 1x 2Ixl

and

V n(ixli)= nJ/n dqJ 1 d4? "' J02 d n_ d4 (A-1Z)

dj C n n-1

Vn(lXI) =n n if d42 .. j o 02 -4n_'1 d4 ni (AZ-13)

But

J Z, (a./ In-1) c4 1

is recognized as the Beta Function (1/2r-2)01(1/2,3/2). Generally

a 2 q/2 q+3o ~ ~ 1 ( -- ,, q + 2J (CL p dp~ r 2 (.q 2

0

Therefore,

1 r  3

Vn(IxI): 2 n-r 'K)r(2) fn djlfn1 d1 2 . + T (.,) r+1/2 d r (A2-14)n¢ J 1jo a o r n_-r-l ( -

so that when carried out to r= n - ,

1n-1 3

Vn(I XIZ 2j n ,(A2-15)n n + 2 n A-5
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= n/2 IXIn (A2-16)

The surface S (I XI) of the hypersphere is thus readily obtained as

s n ( x ) 
=X z n / 2 !x I n -I

Sni (A2- 17)

and the product of (AZ-10) and (AZ-17) is

a
' z ixIn- 1  exp L I1

p0 (1 - F)) (AZ-18)

2 (Zs)n/2 x[- i] (AZ-7)

Some of the properties of this distribution are as follows.

F Xj 1l n+ I
E X[] Zxcnexp Ls-i d X 1 S) s F(nt 1) (A2-19)=fso/' (2S ) (ZS) -11r n2

2 (A-20)

lim E [IX =n FnS (AZ-21)

B ~ 0 [x}j axn+l1 exp [~idX l 2 j-' + ij.(A-
(s)n 2  () (zs)n/F() 1(11 + 1 A22)

-nS (AZ-?2a)

0,Il = nSs - % <2 (AZ-23)

If Stirling's approximation is used for 1-(n) and one examines p 0 (IX I//-ns), there

results the expression

__Xl - X exn "i' )1I
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which is valid for n of the order of ten or higher.

One notes that, for JX] = JF--, the value of the density distribution function is 4W,-7
and that the variance of the distribution behaves as 1/n. Therefore, the distribution function

behaves somewhat like a unit impulse function at IXI/Nrn= 1 . The distribution is given for a

few values of n, tabulated in Table All-I, and plotted in Fig.A2.1.

TABLE AII-1

NORMALIZED PROBABILITY DENSITY OF VECTOR MESSAGE

n = 3 n= 10 n 100

0.01 0.043 0.50 0.965 0.81 2.26

0.25 0.805 0.90 1.830 0.90 4.5Z
0.667 1.070 1.00 1.783 0.96 5.52

1.000 0.977 1.20 1.490 0.99 5.66

2.000 0.438 2.00 0.271 1.04 5.35

4.000 0.043 1.10 4.29

1.21 1.96

6

5

n=I00
4-

x

n 3

0.4 0.8 1.2 1.6 2,0 2.4
(IX I/,i-)

Fig. A2. 1. Probability distribution of
relative amplitudes of vectors.
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APPENDIX III

PROBABILITY OF ERROR: ADAPTATION FROM S. 0. RICE

Equation (4-12) of S. 0. Rice's article "Communication in the Presence of Noise -

Probability of Error for Two Encoding Schemes" is given (in the nomenclature of this paper)

as
P(no error) = P(D 1 , D 2 , D 3 , •. Dk>Do)

=X 0 d ZJJGo jY 
p(IZ. JJ) I Poi, ZIP(A3- 

1)

In his Appendix I, Rice gives as an approximation for P (lYl, IZI) the expression

P(IYI, IZI) 7L(' D) exp (A3-2)

where r E p D-] JY . This expresses the probability that any one dis-

tance ("D" above) from the point Z to the point Xk be less than the magnitude of the noise vec-

tor Y, under conditions of fixed IZI and fixed IYL. The result is then averaged over all mag-

nitudes of 2 and V.
An approximation for the probability of error results by taking

1 - P(D 1, DZ , D 3 , • Dk>Do) which for small P(error) is given approximately by

P(error) " fdiZf djYj p(IZL, IY) P(IYI, IZI) (A3-3)

As n increases, p( Z. JYb) approaches an impulse with all significant contribution

to the integral in the vicinity of IZI - nP and JY = nN. Evaluating the integral at these values

of Z I and IYI yields a rough approximation for the probability of error, namely,

K7 ( D 2.L (A3-4)
P(error) ^w,-w- exp -2

The variance arD  defined earlier as the mean square difference of the distances Dk and their

mean is given by Rice in terms of I4Z, but when evaluated at the average IZI equals

2nS ( S + 2P). Rice gives p in terms of IYI. Again, if evaluated at the average jY . the result

is p z D- IY n (P + S - N) = ZnS. For these values, the approximation reads

P (error) ". K FS )exp ns (A3-5)

Where S<<N, this may be written even more approximately as

(error) S ex. (A3-6
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This expression can now be written in terms of the approximations nS/2N CT

for S << N and K A exp(H'T] for K >> 1. The result is then

1 r,.IT Hi) (37
P(error) , - exp PCT(I -- j (A3-7)

and is reasonably valid for very large n, large K, and large noise-to-signal ratios. The first

two conditions are the same as those introduced by Rice for the validity of his probability-of-no-

error expression. The third is added to show the similarity of his results to those of Chapter IV.
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APPENDIX IV

THE ARBITRARY ORIENTATION OF THE VECTOR FIELD

Let the set of possible message vectors be set up in a matrix ISk+ 1,n -The sub-

scripts indicate rows and columns in that order, where the vectors are arrayed by rows, their

coordinate components by columns.

X 01 X 2 . . . X ln
X11 X12 XI

[Sk+l.n] (A4-1)

Xkl Xkz " kn

It is assumed that this matrix is known to both the transmitter and receiver, and the

transmission of a message is represented mathematically as the selection of one of the K+ 1 rows

(arbitrarily, the X. vector), and adding another row matrixY to this row and delivering the re-

sult to the receiver. The resulting row matrix is X + Y X + Y . The transpose of this matrix

is designated by Z] , and at the receiver the operation of [Sk + I- n ] post-multiplied by Z] is per-

formed. The resulting column matrix of K+ 1 rows is designated by W]. The receiver chooses

which of the vectors in the [s] matrix was most probably transmitted according to the values of

the elements of W. The operation is

[Sk+1,n] Zn] = [Wk+l, l] = W] .(A4-)

Next, one takes a unit orthogonal transformation ,that the vector X is

transformed, for example, to lie along one of the coordinate axes, arbitrarily the first. Then

Sk+l,.n] J[An, n]= [S+ln ]  
(A4-3)

In this transformation, it is apparent that

n
Z Xoialj IX01i=

while
n
2; - jYiaji= 0, i I

i~l

Further, the sum
n
- a -a . 5r

i=l ri s1 5

where 6 r is the Kronecker delta. The set a of elements will be a1 l =X 0 i/ X0 1 while the values
s

of the other elements of A are determined by the orientation of the vector field about the first

coordinate axis, which is arbitrary.
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Obviously,

ISk+ 1 [An] [A] =I W ](4-4

in which

[A 0  -1 n] LAn]t .(A4 -5)

But

0

Since Y is chosen at random in the n-space in the first place, it might well be chosen

after orientation, and thus one may write Yn] for [A n,] [] t . Then, the final matrix

0 Y2
Wk_1,1 ] = [Sk+ 1,nj - +

"  
(A4 -7)

n J
A closer inspection of the structure of [sk+ 1, n] reveals the matrix below.

1X01 a . o
x() 12 In

n] =  (A4-8)

Xkl X

The X!..'s are also rardomly oriented in n-space so that they fit the same probability density
i3

distribution after coordinate rotation as before.

In a similar manner, one might choose LA, nj to reorient the vector field so that Z

falls along the first coordinate. In this instance, the combination

0

Ln, jt Z] ' (A4- 9)

0j

66

CONFIDENTIAL



CONFIDENTIAL

while the combination

x:l xO2  Xo~n
IIX1 X1.l

0]L1 l 02 in

ES k+ 1. [IAn n]= X!, 0In(A4-1 
0)

XI1 I" X11
k 1 kz kn

(Again the numbers X'. for i j4 0 are from the same density distribution after coordinate rotation,i

as before. The result finally obtained is given by

X11
01

XI

kl

The result indicated by the matrix W] is the same as that indicated by the column matrix of com-

ponents of the vectors in the 7 direction, and thus a decision based on the values of these compo-

nents is equivalent to one based on the elements of W]
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APPENDIX V

THE PROBABILITY DENSITY FUNCTION FOR CORRECT OUTPUTS

The correct correlation output for any of the systems described in which a noise-

free version of the reference signal or signals is available to the receiver has, by arbitrary la-

beling of the results, been designated W This value is given by
0

W=j I  + x Y , (A5-1)

or

W = IXoI [IXoI + Y1 ] , (A5-Z)

where the methods of Appendix IV have been used to reduce the dot product of Eq. (AS- 1) to the

single algebraic product in Eq. (A5-Z).

The probability density distribution function of outputs W is designated p, (W
0 (W

and can be expressed by

exp Kw N I j

P2 (WO) P°(Ix1) dlX 0 - 1- 0 (AS-3)
p I(Wr)J 0(IXNbd- I gX 01

The exponential expression of Eq. (A5-3) is simply the Gaussian distribution function with aver-

age IX I? and variance NIXo12. Thus, it is the conditional probability function for the value
I3olI2 IX Y in Eq.(A5-2) subject to given (fixed) Ixol. In Eq. (A5-3), p 2(Wo) is obtained

by averaging the conditional distribution over all 1o I •
If the expression for p0 (IX 1) is inserted in Eq. (A5-Z), it becomes

P5W~hf aionep~ I2;~~ exp ~(Woj I i 1oiZ)00 ?_lx01 -1 exp 0 N IX1 A lolz.-.

(22S)01-' 2F(Th 0 jdIX0 I , (A5-3a)P ) --l (2 s)"/ F( ) v Z- IXo0l

which can be simplified somewhat by letting IX 0o1 = a, Then

n+3 [_ (W. - a) 2

P M W 0  exj a-S- ZN - da (A5-3b)
,fZnN (zs)n/z n-z)

The expression given by Eq. (A5-3b) can be integrated into a complicated expression

involving modified Bessel functions of the second kind. However, the characteristic function is

more easily obtained and can give a great deal of information about the probability distribution
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in an easy manner. Thus00
@2(t) exp[jWot I p2 (W) dW0  , 

(A5-4)

exp Kw X; i z,2]
-0 0 0 000 0 0W e x 2AI50 1- 4 a )

Po (Xo 1) dXo exp[ ot] -e K iA
Let (W° - IXo I ) = v, then dWO  dv ; Wo = v + IXo Iz

@2 (t) =f po (IX0 1) dIX 0 exp[jI xo t] f exp[jvt] L N ]Xo dv , (AS- 5)

10 0 lo ,t X I

0jPo (IX) dX° 0exptjIXiZt] exp 
, (AS-5a)

Go ix 1 on-l exp L-I XI, -- + t -5jtb

(ZS)n/2 ( ) dIX 0  
(A-b)

The last expression can be easily integrated. If a is again substituted for IX0 12

n F_ l Nz ljt

p00 2 exp -a (--+- + Jt)
0z (t) a L 2S ~ '(da , (A5-6)

so that

0. (t) , (A5- 6a)
(ZS) aZ) 1 _(2) A -+- jt)n/j

n

=[1 + SNt2 - 2jSt] 2 (A5-7)

From this characteristic function, one may find the moments, and from them obtain

a reasonablL approximation to p2 (Wo) in normal form. For example,

n+2

W j dt = (Aft + SNt2
-zjSt] 2 (2SNt-ZjS) It =o (A5-8)

=nS (AS-8a)
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n+2
2 d 2

W - dt[(1 + SNt - 2jSt) (jnS - nSNt)] It=o (A5-9)

F n+4
2 (1 + SNt - ZjSt) (-Zn) (SNt - jS)

n-2

+ (1 + SN -zjS) (-nSN) It=o (A5-9a)

= nS (n + 2) + nSN (A5-9b)

2From the knowledge of W o and W.0 , 'the variance can be computed as

r nS (n + ) + nSN - (nS) (A5- 10)

0w  = nS (N + ?-S) (A5- 10a)
W

Therefore, in as, much as p? (W ) is the average of a Gaussian distribution with varying average

and variance, one may approximate it with the, normal density distribution function,

(W° -ns)'
? (W0  exp (Vg0  (A- 11)0 2 nS (N + 2S) L )nS(N+ZS

This expression is valid chiefly over the bell-shaped part of the curve, and a more precise knowl-

edge of p2 (Wo) is required for an accurate knowledge of the function along its skirts. Returning

to Eq. (A5-3b) and rewriting it slightly, one has

r O 0 2 exp [ S -N U da5,-1

P? (W 0 ) 2)/f~ c (A5 -12)

C nJex d (A-12a)
(2s) n/2,0 L S 2 N c j

To evaluate the last given expression, reference to G. N. Watson's "Theory of Bessel

Functions" (p. 183, formula 15) reveals

Ct-  - 1 exp t - z2 dr - Z (@ Z) (A5-13,)

(tz) V

To put the integral of Eq. (A5-l-a) into the same form, a substitution of t for o(P/2SN) yields
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00n-3 
2

f exp -a (±) jda

S NO N S , P

n-3 2~f00 (411) 2G estPWj t -1exp t - 2-- d t (A5- 14)

(2_ 1 dt
4N2St

n-1
S ) 0- 2 n ~~

2SN d - - FtNS -jdt .(AS5- 14a)
= C ) exp t-i- -I.I o At

Thus, in terms of Eq. (AS-13). v = (1 -n)/2, and Z is (W0/N) N P/S. Therefore,

n- 1 n-I
CL2 xp P - a SN 2R N- S W (A5-15

2 (2-N) P o2 Kf l -nt , (AS-Ia)02

n-i
= 2(1>)K WXKA ) (A5-15b

Therefore,

2 exp 2 4 1 pPZ( =w - n-I N ,T (A5-16)
= (C2S)n/ C) 2

This expression may be used in connection with the limited tables of the Bessel Func-

tion if high accuracy is a requirement.
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APPENDIX VI

INTEGRATION TO OBTAIN THE PROBABILITY OF ERROR

In Chapter VII, the expression for the probability of error applicable to the system

investigated experimentally [See Eq. (7-7)] is

P(error) = -j-- a exp[--(a 2  1)] erf 4da (A6-1)

To obtain satisfactory values of P (error), this expression has been integrated nu-

merically by methods designed to give results within about one per cent of the true value of the

integral. Such integration is seen to be necessary for small values of n, since the changes in

erf \]np/ 4 a are great over the range of values for which p 0 (a) is substantially different from

zero (see Appendix II).

The integrand of (A6-1) is seen to vanish faster than a simple exponential for larwe

a, and it may be shown that the integrand for very small a is less than exp [-n/2 (1 - a) ] -

Thus, it is sufficient for the required accuracy to integrate only over those values ti a for which

the integrand exceeds exp [-51 times its value at a = 1 . The value at a = I is not the maximum

value of the integrand, but is of the same order of magnitude.

To determine the limits of a over which integration should be extended, an approx-

imate value for the integral (A6-1) is used. Where f(n,p) is used for the probability of error

for fixed values of n and p, the new form is

f(n.,p)= f-.jr1 nexp [-na l exp[- n:] da (A6-2)

The ratio of the integrand to its value at a = 0, (a =). is given by

ratio = 1 + a exp [-n (a - 81+ a)] (A6-3)

It is desired to determine the values for which

2 L > 5 ( 6 4
8(1 + a) n (A6-4)

2It is obvious that for positive a, a/(l + a)< 1 , so that if a (5/n)+(p/8)the inequal-

ity is satisfied. Furthermore, if a2 by this equation is less than one, aAl ' a) does not exceed

one-half, and the expression for positive a (or upper limit of integration) becomes

a + 16 (A6-5)

The argument leading to Eq. (A6-5) is not valid for a negative. Consider p = -a, and for

0 < p < 1 it is desired that
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P 2 + op I (A6-6)

For small P, a solution to the inequality is

40 (A6-7)P-np

Since the economy of knowing Pi occurs only when P is small, nothing more need be derived

about A.

From Eqs. (A6-5) and (A6-7), one may write

P(error) - 2 nj -a exp[-(a - 1)] erf 4-ada (A6-8)

in which a I is the larger of zero of 1 - 40/np and a 2 is given by 1 + N(5/n)+(p/16)unless a 2

exceeds two by this formula, in which case I + 4(5/n)+(p/8)should be used.

Below in Table A6-1 are tabulated results of this numerical integration over the

limits indicated above. The probability of error is plotted as a function of signal-to-noise-

power ratio and time-bandwidth product (or dimension) n in Chapter VII (see Fig. 7.2).

TABLE AIV- I

PROBABILITY OF ERROR FOR THE BINARY CHOICE SYSTEM

OBTAINED BY NUMERICAL INTEGRATION

n \\ P-0. 001 0.01 0.1 1.0 10.0
10 0. 480, 0.433 0.307 0.0548 1.94x 10-6

10 0. 437* 0.308 0.0568 3.09 x 10 -' 1.30 x 10 68

10 0.309* 0.0566 2. 59 x 10 -  1. 30 x10 " 5 ° *  0

10 0. 0569* 2.87 x 10-  . 30 x10 0 0

10 2.88 x 10-* 1.30 x 10-f* 0 0 0

* = entries taken from the error function table of 1/2 erf4_niT4
in which n is considered sufficiently large that the change in value
of the error function over the range of contribution of a is small.

The O's are inserted in those positions of the table where the prob-
ability of error is insignificant in the lifetime of an equipment.
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APPENDIX VII

SCHEMATICS OF THE EXPERIMENTAL NOMAC SYSTEM

The block diagram below (Fig. A7.1) is a guide to the complete schematic diagrams

on the following pages.

RANDOM- SIGNAL GENERATOR

(Noise at 35 Mc + 2 Mc)

Fig. A7.2

SIDE-BAND GENERATOR (TRANSMITTER)

Fig. A7.3

29.65 M M 10.35 M

CHANNEL SIMULATED CHANNEL CHANNEL
NOISE NOISE

30 Me Fig. A7.4 40 Me

29.65 Me 40.35 Me

CORRELATION CONVERTER

Fig. A7.5

10.7 Mc

INTEGRATING FILTER (RECEIVER)

Fig. A7.6

Fig. A7. 1. Block diagram of experimental system.
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APPENDIX VIII

THE DISTRIBUTION OF SUMS OF PRODUCTS

Although the probability density distribution discussed in this Appendix does not ap-

pear in the main body of the paper, it was extensively investigated during the preliminary re-

search work. Since it is inherently related to the correlation process, a review of the results

is given here.

Let U be defined as the sum of products XY where X and Y are independent nor-
mal variates, the variance of the former being S and that of the latter being N . Thus,

n n
U= s Ui = z x . (AS-1)

i=l i=1

The joint distribution of X, a nd Y. is written from a knowledge of their individual distributions.

exp

p(X,Y) = x - 2-Ni (A8-2)
Zn 4r-N-

The probability density distributio. for Ti i XiY. is given by

pi (Iu tl) 2 exp a da (A8-3)
-I -qg- - ?U

where the integration is carried out only in one quadrant of the joint distribution, which is sym-

metrical about both X and Y axes. As given in (A8-3) p' is an even function of Ui on the left,

and, since positive or negative products occur with equal likelihood, it is apparent that

p(i) = iSN a exp -2j da (A8-4)

To obtain the desired density distribution function, the characteristic function is

found as an intermediate step.

01 Wt exp [itU exp Is-- da d~ i  
(s

a ~

'Hf da e x p  F exp Ui + it dU i  (A8-4a)

fd aF. -oo ZNaa2 j

1f 2 --- e 2 x+N tj da (A8-4b)
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= [1 + SNtZ . (A8-5)

The characteristic function of the desired probability density distribution function p (U) is then

given by

n

(t) - + SNt ] 2 (A8-6)

and from it,

n

Tap(U) = exp[-itU] [I + SNt-] dt . (A8-7'
1T

From the characteristic function, one obtains a complete description of the distri-

butions of U's . For example, from the expansion of 0(t), one obtains U = nSN and thus,
2

- = nSN, since U is zero.

Foster and Campbell 2 list the integral (A8-7) in their comprehensive table of trans-

forms. In particular, transfer pair No. 569 links 1/[3 + P 2 and
I

I gl Ka - Algl
4-F F(CL)(zl

When this is applied to Eq. (A8-7), the result is

n-i

p (U) &N Knj2(7- 1 )(A8-8)

The K V (z) here is the modified Bessel Function of the second kind for imaginary arguments of
order v . Many sources (e. g., Hildebrand 13 ) give the behavior of

K (z) 0 Zv -1 -v

When this is substituted in Eq. (A8-8), the value of p(U = 0) is obtained, and is found to be
I1/[/2NSn-w.

An interesting way of examining p (U) can be developed as follows. Let

a(t) = ba(t) b(t)

Thus,

Oa (t) (AB-9)1at 1 + i -S-N- tj n / 2

and 1

b (t) I - -(A8-9a)
[ 1 - i NrSN tIn

Since it is known that p (U) is the transform of @(t), it must be the convolution of

two distribution functions Pa (V) and Pb (W), namely,

8C
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Go
p(U) Pa(V) Pb(U -V) dV . (A8- 10)

00
in which

Pa (V) =-f exp[-itV] a (t) dt (A8- 10a)

and

Pb (W) = -,expl-'tW b (t) dt A8- I0b)

But integrals of the type (A8-10a) and (-lob) were studiec din Appendix II. In partic-
ular, it was found that Pb (W) is of the form of p0 (W) in which (2S) has been replaced by &FSN,

and similarly, pa (V = po (-V) with the same substitution. Thus, ;W exists only as a positive

number and V is a negative number. The variable desired, U, is- sum of a positive and a

negative number taken from the same distribution of magnitudes (hncxjwn as the "Chi-squared"
distribution in statistics). Thus, the form of Eq. (A-10) may be ch--anged to read

p(U) f: PO(W) Po(U + W) dW (A8-il)

This is recognized as the identical form of the autocorrelation fumti ion of U for the probability

density distribution p "

When n is even (n - 1/ 2 is half an odd integer) the Bess sel Function reduces to a

polynomial. This fact can be obtained as a result of the autocorrlaation process indicated in

(A8-11) - namely, if p 0 (W) = aW p - 1 exp[-IW], a and .P being wriltt:en for more complicated

constants,

p(U) =fo0 a2 Wp - 1 (U + W) p - expl- 2 W - 1U] dW, U>?0 (AS- 12)

2 ,& p-1
2 exp[ w P-1 W - k - I U k

a exi- y Z p-ICk wPk k exp[-ZW]fldW . (A8-1Za)

The order of integration and summation may be interchanged, and tf be integration resulting is

easy to perform. Then,

a exp[- 3U(p - i)! (2p - K - ) k k (A-13)
(?P Y p - 1  k=o (p-K -i . (3) k U k , U1 !K

When a and P are replaced by their values in terms of S and N,

exp- I U .. _ k

p.(U) = "___N Z ( - I k (AS- 14)
n( FS N4-f k.o (n- -KK TiW

valid for all U when n is even. The absolute-value symbols areirrm-duded because (A8-12) is

derived orlly for positive U. The knowledge of the property of thea;autocorrelation function, i.e.,
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p (U) = p (-U), is used to extend the result to negative values of U.
The first check on (A8-14) occurs for n = 2 in whiL); case

p()= exp lU]

This may be readily verified by integration of (A8-7) 'or this vajie of n.
As a final inspection of the properties (' PU), it is interesting to compare certain

properties of the density distribution function with those of the function of Appendix II P0 (X).
In particular, if Q7W is replaced by a in p0 and 'rfN- is replaced by a in p (U), it develops
that the maximum value of each distribution function is 1/a4 rn, while the variance associated
with each is na They differ in their other moment., however, in as much as p0 (X) is defined
only for magnitudes, and is centered about an average na/4-, while the average value of U is
zero.
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