
THE CRYPTOGRAM Summer 1992

COMPUTER

SUPPLEMENT #16

In this issue:

A SURVEY OF DATA ENCRYPTION — A review of different cryptographic systems and
their application to computers.

A THREE ROTOR ENCRYPTION SYSTEM — MONIOC details a rotor system based on
the Japanese Purple code.

SOUNDEX PATTERNS — Another way to pattern words when some letters may be un-
known.

LETTER COUNTING — BASIC and C programs to compute letter frequency and variety
of contact.

SON OF PERMUTE — TATTERS gives a faster permutation program.

Plus: News and notes for computerists interested in cryptography, and cryptographers in-
terested in computers.

Published for the AMERICAN CRYPTOGRAM ASSOCATION

INTRODUCTORY MATERIAL

The ACA and Your Computer (1p). Background on the ACA for computerists. (As printed in ACA and
You, 1988 edition; [Also on Issue Disk #11]

Using Your Home Computer (1p). Ciphering at the ACA level with a computer. (As printed in ACA and
You, 1988 edition).

Frequently Asked Questions (approx. 20p) with answers, from the Usenet newsgroup sci.crypt.

REFERENCE MATERIAL

BASICBUGS - Bugs and errors in GWBASIC (1p). [Also on Issue Disk #11].
BIBLIOG — A bibliography of computer magazine articles and books dealing with cryptography (2p).
(Updated August 89). [available on Issue Disk #11].

CRYPTOSUB - Complete listing of Cryptographic Substitution Program as published by PHOENIX in
sections in The Cryptogram 1983–1985. (With updates from CS #2,3). [available on Issue Disk #3].

DISKEX - A list of programs and reference data available on disk in various formats (Apple—Atari—
TRS80—Commodore—IBM—Mac). Revised March 1990.

ERRATA sheet and program index for Caxton Foster’s Cryptanalysis for Microcomputers (3p). (Reprint
from CS #5,6,7 and 9) [disk available from TATTERS with revised programs].

BACK ISSUES

$2.50 per copy. All back issues prior to 13 have been exhausted, and are awaiting reprinting. Contact the
Editor for current availability.

ISSUE DISKS

$5 per disk; specify issue(s), format and density required. All issues are presently available on two IBM
High Density 1.2M disks, archived with PKZIP. For other disk formats, ask. Disk One — Issues 1 - 10; Disk
Two — issues 11 to current. Disks contain ONLY programs and data discussed in the issue. Programs are
generally BASIC or Pascal, and almost all executables are for IBM PC–compatible computers. Issue text in
TEX format is available for issues 16 to current. Available from the Editor.

TO OBTAIN THESE MATERIALS

Write to: Or via Electronic Mail:

Dan Veeneman dan%decode.UUCP@uunet.uu.net

PO Box 2442 or

Columbia, Maryland uunet!anagld!decode!dan

21045-2442, USA.

Allow 6–8 weeks for delivery. No charge for hard copies, but contributions to postage appreciated. Disk
charge $5 per disk; specify format and density required. ACA Issue Disks and additional crypto material
resides on Decode, the ACA Bulletin Board system, +1 410 730 6734, available 24 hours a day, 7 days a
week, 300/1200/2400/9600 baud, 8 bits, No Parity, 1 stop bit. All callers welcome.

SUBSCRIPTION

Subscriptions are open to paid-up members of the American Cryptogram Association at the rate of US$2.50
per issue. Contact the Editor for non-member rates. Published three times a year or as submitted ma-
terial warrants. Write to Dan Veeneman, PO Box 2442, Columbia, MD, 21045-2442, USA. Make checks
payable to Dan Veeneman. UK subscription requests may be sent to G4EGG.

CHECK YOUR SUBSCRIPTION EXPIRATION by looking at the Last Issue = number on your
address label. You have paid for issues up to and including this number.

Summer 1992 1

SURVEY OF DATA ENCRYPTION

John A. Thomas
CompuServe: 75236,3536
101 N.W. Eighth St.

Grand Prairie, TX 75050

Introduction

The following article is a survey of data
encryption. It is intended to provoke dis-
cussion among the members of this forum
and perhaps lead to a creative exchange
of ideas. Although the basics of the sub-
ject seem to be known to few programmers,
it embraces many interesting and challeng-
ing programming problems, ranging from
the optimization of machine code for max-
imum throughput to the integration of en-
cryption routines into editors, communica-
tions packages, and perhaps products as
yet not invented. Governments have domi-
nated this technology up until the last few
years, but now the need for privacy and
secrecy in the affairs of a computer–using
public has made it essential that program-
mers understand and apply the fundamen-
tals of data encryption.

Some Cryptographic Basics

A few definitions are appropriate first. We
use the term “encryption” to refer to the
general process of making plain informa-
tion secret and making secret information
plain. To “encipher” a file is to transform
the information in the file so that it is no
longer directly intelligible. The file is then
said to be in “ciphertext”. To “decipher”
a file is to transform it so that it is directly
intelligible; that is, to recover the “plain-
text.”

The two general devices of encryption are
“ciphers” and “codes” A cipher works on

the individual letters of an alphabet, while
a code operates on some higher semantic
level, such as whole words or phrases. Ci-
pher systems may work by transposition
(shuffling the characters in a message into
some new order), or by substitution (ex-
changing each character in the message
for a different character according to some
rule), or a combination of both. In modern
usage, transposition is often called “per-
mutation.” A cipher which employs both
transposition and substitution is called a
“product” cipher. In general, product ci-
phers are stronger than those using trans-
position or substitution alone. Shannon[5]
referred to substitution as “confusion” be-
cause the output is a non-linear function
of the input, thus creating confusion as to
the set of input characters. He referred
to transposition as “diffusion” because it
spreads the dependence of the output from
a small number of input positions to a
larger number.

Every encryption system has two essential
parts: an algorithm for enciphering and de-
ciphering, and a “key” which consists of in-
formation to be combined with the plain-
text according to the dictates of the algo-
rithm. In any modern encryption system,
the algorithm is assumed to be known to
an opponent, and the security of the sys-
tem rests entirely in the secrecy of the key.

Our goal is to translate the language of
the plaintext to a new “language” which
cannot convey meaning without the addi-
tional information in the key. Those fa-

2 Computer Supplement 16

miliar with the concept of “entropy” in
physics may be surprised to learn that it
is also useful in information theory and
cryptography. Entropy is a measure of the
amount of disorder in a physical system,
or the relative absence of information in
a communication system. A natural lan-
guage such as English has a low entropy
because of its redundancies and statistical
regularities. Even if many of the charac-
ters in a sentence are missing or garbled,
we can usually make a good guess as to
its meaning. Conversely, we want the lan-
guage of our ciphertext to have as high an
entropy as possible; ideally, it should be
utterly random. Our guiding principle is
that we must increase the uncertainty of
the cryptanalyst as much as possible. His
uncertainty should be so great that he can-
not make any meaningful statement about
the plaintext after examining the cipher-
text; also, he must be just as uncertain
about the key, even if he has the plaintext
itself and the corresponding ciphertext (In
practice, it is impossible to keep all plain-
text out of his hands).

A prime consideration in the security of an
encryption system is the length of the key.
If a short key (i.e., short compared with
the length of the plaintext) is used, then
the statistical properties of the language
will begin to “show through” in the cipher-
text as the key is used over and over, and a
cryptanalyst will be able to derive the key
if he has enough ciphertext to work with.
On the other hand, we want a relatively
short key, so that it can be easily stored or
even remembered by a human. The gov-
ernment or a large corporation may have
the means to generate and store long bi-
nary keys, but we cannot assume that the
personal computer user will be able to do
so.

The other important fact about the keys

is that there must be very many of them.
If our system allows only 10,000 different
keys, for example, it is not secure, because
our opponent could try every possible key
in a reasonable amount of time. This intro-
duces the concept of the “work factor” re-
quired to break an encryption system. We
may not have a system unbreakable in prin-
ciple, but if we can make the work factor
for breaking so high it is not practical for
our opponent to do so, then it is irrelevant
that the system may be less strong than the
ideal. What constitutes an adequate work
factor depends essentially on the number
of uncertainties the cryptanalyst must re-
solve before he can derive plaintext or a
key. In these days of constantly improving
computers, that number should probably
exceed 2128. It is easy to quantify the work
factor if we are talking about exhaustive
key trial, but few modern ciphers are likely
to be broken by key trial, since it is too easy
to make the key space very large. Most
likely they will be broken because of in-
ternal periodicities and subtle dependency
of output on input which give the crypt-
analyst enough information to reduce his
uncertainty by orders of magnitude.

A corollary to work factor is the rule that
a system need only be strong enough to
protect the information for however long it
has value. If a system can be broken in a
week, but not sooner, then it may be good
enough, if the information has no value to
an opponent after a week.

Cryptanalysis

Cryptanalysis is the science of deriving
plaintext without the key information.
Anyone intending to design an encryp-
tion system must acquaint himself to some
degree with cryptanalytic methods. The

Summer 1992 3

methods of attack may range from so-
phisticated statistical analysis of cipher-
text to breaking into the opponent’s of-
fice and stealing his keys (“practical crypt-
analysis”). There are no rules of fair play.
The cryptanalyist is free to use his puzzle–
solving ingenuity to the utmost, even to
the point of applying the knowledge that
your dog’s name is “Pascal”, and that you
might be lazy enough to use that as your
key for the day.

The cryptanalyst may have only ciphertext
to work with, or he may have both cipher-
text and the corresponding plaintext, or he
may be able to obtain the encipherment of
chosen plaintext. Some cryptographic sys-
tems are fairly strong if the analyst is lim-
ited to ciphertext, but fail completely if he
has corresponding plaintext. Your system
should be strong enough to resist attack
even if your opponent has both plaintext
and ciphertext.

Computer power can greatly aid cryptanal-
ysis, but many systems that appear strong
can be broken with pencil-and-paper meth-
ods. For example, the Vigenere family of
polyalphabetic ciphers was generally be-
lieved to be unbreakable up until the late
nineteenth century. A polyalphabetic ci-
pher is a substitution cipher in which a dif-
ferent alphabet is used for each character of
plaintext. In these systems, the key deter-
mines the order of the substitution alpha-
bets, and the cycle repeats with a period
equal to the length of the key. This period-
icity is a fatal weakness, since fairly often a
repeated letter or word of plaintext will be
enciphered with the same key letters, giv-
ing identical blocks of ciphertext. This ex-
poses the length of the key. Once we have
the length of the key, we use the known
letter frequencies of the language to grad-
ually build and test hypotheses about the
key. Vigenere ciphers can be easily imple-

mented on computers, but they are worth-
less today. A designer without knowledge
of cryptanalysis however, might be just as
ignorant of this fact as his colleagues of the
last century. Please see the references at
the end of this article for information on
cryptanalytic technique.

A Survey of Cryptographic systems

We now review some representative en-
cryption schemes, starting with traditional
ones and proceeding to the systems which
are only feasible to implement on comput-
ers.

The infinite–key cipher, also known as the
“one time pad,” is simple in concept. We
first generate a key which is random and
at least the same length as our message.
Then, for each character of plaintext, we
add the corresponding character of the key,
to give the ciphertext. By “addition,” we
mean some reversible operation; the usual
choice is the exclusive-or. A little reflec-
tion will show that given a random key
at least the size of the plaintext (i.e., “in-
finite” with respect to the plaintext be-
cause it is never repeated), then the result-
ing cipher is unbreakable, even in princi-
ple. This scheme is in use today for the
most secret government communications,
but it presents a serious practical problem
with its requirement for a long random key
for each message and the need to somehow
send the lengthy key to the recipient. Thus
the ideal infinite key system is not prac-
tical for large volumes of message traffic.
It is certainly not practical for file encryp-
tion on computers, since where would the
key be stored ? Be wary of schemes which
use software random–number generators to
supply the “infinite” key. Typical random–
number algorithms use the preceeding ran-
dom number to generate the succeeding

4 Computer Supplement 16

number, and can thus be solved if only one
number in the sequence is found.

Some ciphers have been built to approx-
imate the infinite–key system by expand-
ing a short key. The Vernam system
for telegraph transmission used long pa-
per tapes containing random binary dig-
its (Baudot code, actually) which were
exclusively-or’ed with the message digits.
To achieve a long key stream, Vernam and
others used two or more key tapes of rel-
atively prime lengths, giving a composite
key equal to their product. The system
is still not ideal, since eventually the key
stream will repeat, allowing the analyst
to derive the length and composition of
the keys, given enough ciphertext. There
are other ways to approach the infinite–
key ideal, some of which are suggested in
the author’s article (with Joan Thersites)
in the August 1984 issue of Doctor Dobbs
Journal.

The “rotor” systems take their name from
the electromechanical devices of World
War II, the best known being perhaps the
German ENIGMA. The rotors are wheels
with characters inscribed on their edges,
and with electrical contacts corresponding
to the letters on both sides. A plaintext
letter enters on one side of the rotor and is
mapped to a different letter on the other
side before passing to the next rotor, and
so on. All of the rotors (and there may be
few or many) are then stepped, so that the
next substitution is different. The key is
the arrangement and initial setting of the
rotor disks. These devices are easy to im-
plement in software and are fairly strong.
They can be broken however; the British
solution of the ENIGMA is an interesting
story outside the scope of this note. If you
implement a rotor system, consider hav-
ing it operate on bits or nybbles instead of
bytes, consider adding permutation stages,

and consider how you are going to gener-
ate the rotor tables, since you must assume
these will become known to an opponent.

In 1977 the National Bureau of Standards
promulgated the Data Encryption Stan-
dard (DES) as the encryption system to
be used by all federal agencies (except for
those enciphering data classified under any
of the National Security Acts). The stan-
dard is available in a government publica-
tion and also in a number of books. The
DES was intended to be implemented only
in hardware, probably because its design-
ers did not want users to make changes to
its internal tables. However, DES has been
implemented in software and is available
in several microcomputer products (such
as Borland’s Superkey or IBM’s Data En-
coder). [Editor’s Note: DES implementa-
tions, including source code, are also avail-
able on Apres, the ACA bulletin board sys-
tem. DMV]

The DES is a product cipher using 16
stages of permutation and substitution on
blocks of 64 bits each. The permutation
tables are fixed, and the substitutions are
determined by bits from a 56–bit key and
the message block. This short key has
caused some experts to question the secu-
rity of DES. Controversy also exists regard-
ing the involvement of the National Secu-
rity Agency in parts of the DES design.
The issues are interesting, but beyond the
scope of this note.

Since DES was intended for hardware
implementation, it is relatively slow in
software. Software implementations of
DES are challenging because of the bit–
manipulation required in the key schedul-
ing and permutation routines of the algo-
rithm. Some implementations gain speed
at the expense of code size by using large
pre–computed tables.

Summer 1992 5

The public key cipher is an interesting
new development which shows potential for
making other encryption systems obsolete.
It takes its name from the fact that the
key information is divided into two parts,
one of which can be made public. A per-
son with the public key can encipher mes-
sages, but only one with the private key
can decipher them. All of the public key
systems rely on the existence of certain
functions for which the inverse is very dif-
ficult to compute without the information
in the private key. These schemes do not
appear to be practical for microcomputers
if their strength is fully exploited, at least
for eight-bit machines. One variety of pub-
lic key system (the “knap–sack”) has been
broken by solution of its enciphering func-
tion, but this is no reflection on other sys-
tems, such as the RSA scheme, which use
different enciphering functions. All public–
key systems proposed to date require heavy
computation, such as the exponentiation
and division of very large numbers (200
decimal digits for the RSA scheme). On
the other hand, a public–key system that
worked at only 10 bytes/sec might be use-
ful if all we are sending are the keys for
some other system, such as the DES.

Some random thoughts

To wrap up this too-lengthy exposition, I
append a few questions for the readers:

Must we operate on blocks instead of
bytes ? Block ciphers seem stronger, since
they allow for permutation. On the other
hand, they make life difficult when file size
is not an integral multiple of the block size.

Can we make a file encryption system in-
dependent of the Operating System ? This
is related to the question above on blocks

vs bits. How do we define the end-of-file if
the plaintext is ASCII and the ciphertext
can be any 8–bit value ?

Can we find an efficient way to generate
and store a random key for the infinite–key
system ? Hardware random–number gen-
erators are not hard to build, but would
they be of any use ?

Bit–fiddling is expensive. Can it be
avoided and still leave a secure system ?
What are the relative costs of manipulating
bits on the Z80 vs the 68000, for example ?

No file–encryption system can erase a file
logically and be considered secure. The in-
formation can be recovered until it is over-
written. Overwriting files adds to process-
ing time. I am informed that it is possible
to reliably extract information even from
sectors that HAVE been overwritten. Is
this so ? [Editor’s Note: Yes, it is possi-
ble to recover information from disks that
have been overwritten. For more infor-
mation on the subject, see National Com-
puter Security Center publication NCSC-
TG-025, A Guide to Understanding Data
Remnance in Automated Information Sys-
tems from September 1991. DMV] If it is,
what is the solution ?

How do we integrate encryption systems
into different tools ? Should a telecommu-
nications program transparently encrypt
data if the correspondent is compatible ?
What about an editor–encryption system
wherein plaintext would never exist on the
disk, only on the screen ? How would we
manage to encipher/decipher text as we
scroll through it and make changes, and
still get acceptable performance ?

By their nature, encryption schemes are
difficult to test. In practice, we can only
have confidence that a system is strong af-
ter it has been subjected to repeated attack

6 Computer Supplement 16

and remained unbroken. What test might
we subject a system to that would increase
our confidence in it ?

References

Here are a few useful books and articles.
This is by no means a complete bibliogra-
phy of the subject:

[1] Kahn, David. The Code Breakers. The
basic reference for the history of cryptog-
raphy and cryptanalysis. Use it to learn
where others have gone wrong.

[2] Konheim, Alan G. Cryptography, A
Primer. Survey of cryptographic systems
from a mathematical perspective. Dis-
cusses rotor systems and the DES in great
detail.

[3] Sinkov, Abraham. Elementary Crypt-
analysis. Very basic, but very useful, in-
troduction to the mathematical concepts
of cryptanalysis.

[4] Foster, Caxton C. Cryptanalysis for Mi-
crocomputers. Covers the cryptanalysis of
simple systems, but still a good introduc-
tion to cryptanalytic technique. Describes
the operation of many traditional systems
in detail.

[5] Shannon, Claude. Communication
Theory of Secrecy Systems. Bell System
Technical Journal (October 1949) : 656-
715. Discusses secrecy systems from view-
point of information theory. No practical
tips, but useful orientation.

[6] Rivest, R. et al. A Method for Obtaining
Digital Signatures and Public Key Cryp-
tosystems. Comm. of the ACM, Vol. 21,
No. 2, (February 1978) : 120-126. This ar-
ticle describes what has come to be known
as the RSA public-key system.

[7] Data Encryption Standard, Federal
Information Processing Standard (FIPS),
Publication No. 46, National Bureau of
Standards, U.S. Dept. of Commerce, Jan-
uary, 1977.

CRYPTOSYSTEMS JOURNAL

Tony Patti has once again come out with
an excellent issue of Cryptosystems Jour-
nal. Volume 2 Number 2 covers the SUM-
MIT cryptosystem, and includes articles on
the Ranger device, computer graphics, re-
views of books and products, and many
other interesting topics. The tome runs
some 118 pages, and comes with a program

diskette.

Cryptosystems Journal is available from:

Tony Patti

P.O. Box 188

Newtown, PA 18940--0188

USA

(215) 579--9888

Summer 1992 7

SOUNDEX

In large databases containing many names,
there may be several names that are spelled
almost identically, but refer to distinctly
different people. Locating a person when
one is unsure of the exact spelling is a
common problem. One technique used
to overcome this problem is the Soundex
Method. This algorithm converts similar-
sounding names into identical codes that
allow matching based on less-than-exact
criteria.

For instance, the last names “Smith”,
“Smyth”, and “Smithe” sound the same,
but are spelled differently. The Soundex
Method would convert each of these names
into the same code (S530), allowing some-
one looking for last names sounding like
“Smith” to search for the Soundex code
“S530”.

For some of you in the United States, the
Soundex code may appear as the first part
of your Driver’s License number. For in-
stance, in Illinois my Driver’s Licence be-
gins as V555.

This technique can also be extended to
crypto work, to provide a somewhat dif-
ferent method of pattern searching. If you
have a tryout word that almost fits, you
could convert the tryout word to Soundex,
and do a search for other words that match

the Soundex code.

This article will present an implementation
of the Soundex algorithm in both C and
BASIC. These programs are available on
on Issue Disk 16.

The algorithm to generate the codes:

1. Retain the first letter of the name, and
drop all occurrences of a,e,h,i,o,u,w,y in
other positions.

2. Assign the following numbers to the re-
maining letters after the first

b,f,p,v -> 1

c,g,j,k,q,s,x,z -> 2

d,t -> 3

l -> 4

m,n -> 5

r -> 6

3. If two or more letters with the same code
were adjacent in the original word (before
step 1), omit all but the first.

4. Convert to the form “letter, digit, digit,
digit” by adding trailing zeros (if there
are less than three digits), or by dropping
rightmost digits (if there are more than
three).

8 Computer Supplement 16

SOUNDEX.BAS

1000 ’ SOUNDEX.BAS

1010 ’ Generate soundex values for given names

1020 ’

1030 ’ References:

1040 ’ Knuth, Donald The Art of Computer Programming:

1050 ’ Searching and Sorting, pp 391-392

1060 ’

1070 ’ Originally developed by Margaret K. Odell and Robert C. Russell

1080 ’ US Patents 1261167 (1918), 1435663 (1922)

1090 ’

1100 ’ 1. Retain the first letter of the name, and drop all occurrences

1110 ’ of a,e,h,i,o,u,w,y in other positions.

1120 ’

1130 ’ 2. Assign the following numbers to the remaining letters after

1140 ’ the first:

1150 ’ b,f,p,v -> 1 l -> 4

1160 ’ c,g,j,k,q,s,x,z -> 2 m,n -> 5

1170 ’ d,t -> 3 r -> 6

1180 ’

1190 ’ 3. If two or more letters with the same code were adjacent in the

1200 ’ original name (before step 1), omit all but the first.

1210 ’

1220 ’ 4. Convert to the form "letter, digit, digit, digit" by adding

1230 ’ trailing zeroes (if there are less than three digits), or

1240 ’ by dropping rightmost digits (if there are more than three).

1250 ’

1260 ’ Euler = E460 Gauss = G200 Hilbert = H416 Knuth = K530

1270 ’ Lloyd = L300 Lukasiewicz = L222

1280 ’

1290 ’

1300 ’ Variables: N$ name as entered

1310 ’ W$ working string

1320 ’ R$ result

1330 ’

1340 T$ = "01230120022455012623010202"

1350 ’ abcdefghijklmnopqrstuvwxyz

1360 ’

1370 PRINT "Enter name ";

1380 INPUT N$

1390 ’ Uppercase all the letters in the name

1400 W$ = ""

1410 FOR P = 1 TO LEN(N$)

1420 V = ASC(MID$(N$,P,1)) AND 223

1430 I = V - ASC("A") + 1 ’ Convert letter to an offset (index into T$)

1440 ’ If the index doesn’t point a letter (1 to 26), skip it

1450 IF (I < 1) OR (I > 26) THEN 1490

Summer 1992 9

1460 ’ Put the code into the result

1470 W$ = W$ + MID$(T$,I,1)

1480 ’

1490 NEXT P

1500 ’

1510 PRINT "Work string is ";W$

1520 ’

1530 ’ Result begins with the first letter of the name

1540 R$ = CHR$(ASC(LEFT$(N$,1)) AND 223)

1550 FOR P = 2 TO LEN(W$)

1560 ’ If the digit is a zero, this is a letter to skip

1570 IF MID$(W$,P,1) = "0" THEN 1620

1580 ’ If this digit is the same as the previous one, skip it

1590 IF MID$(W$,P,1) = MID$(W$,P-1,1) THEN 1620

1600 ’ Put the code into the result

1610 R$ = R$ + MID$(W$,P,1)

1620 NEXT P

1630 ’

1640 ’ pad with zeros and cut to the correct length

1650 R$ = R$ + "0000"

1660 R$ = LEFT$(R$,4)

1670 PRINT N$;" gives a code of ";R$

1680 END

SOUNDEX.C

/* SOUNDEX.C

** Generate soundex values for given names

**

** References:

** Knuth, Donald The Art of Computer Programming: Searching and Sorting

** pp 391-392

**

** Originally developed by Margaret K. Odell and Robert C. Russell

** US Patents 1261167 (1918), 1435663 (1922)

**

** 1. Retain the first letter of the name, and drop all occurrences

** of a,e,h,i,o,u,w,y in other positions.

**

** 2. Assign the following numbers to the remaining letters after

** the first:

** b,f,p,v -> 1 l -> 4

** c,g,j,k,q,s,x,z -> 2 m,n -> 5

10 Computer Supplement 16

** d,t -> 3 r -> 6

**

** 3. If two or more letters with the same code were adjacent in the

** original name (before step 1), omit all but the first.

**

** 4. Convert to the form "letter, digit, digit, digit" by adding

** trailing zeroes (if there are less than three digits), or

** by dropping rightmost digits (if there are more than three).

**

** Euler = E460 Gauss = G200 Hilbert = H416 Knuth = K530

** Lloyd = L300 Lukasiewicz = L222

*/

#include <stdio.h>

#include <stdlib.h>

#define STRING_SIZE 40

#define SOUNDEX_SIZE 4

const char table[] = "01230120022455012623010202";

/* abcdefghijklmnopqrstuvwxyz */

void soundex(char *result, char *source, int length)

{

int pos, index, result_length;

char name[STRING_SIZE + 1];

char working[STRING_SIZE + 1];

/* Uppercase all the letters in the name */

for (pos = 0; pos < strlen(source); pos++)

name[pos] = toupper(source[pos]);

name[strlen(source)] = ’\0’; /* End of string marker */

result_length = 0;

for (pos = 0; pos < strlen(name); pos++)

{

/* Convert letter to an offset */

index = name[pos] - ’A’;

/* If index points to a letter replace the letter

with the corresponding table entry */

if ((index >= 0) && (index <= 25))

Summer 1992 11

working[result_length++] = table[index];

}

working[result_length] = ’\0’; /* Place an end of string marker */

printf("Working string is %s\n", working);

/* result starts with the first letter of the name */

result[0] = name[0];

/* Transfer code to result if it’s not zero or a repeat */

for (pos = 1, result_length = 1;

(pos < strlen(working)) && (result_length < length); pos++)

if ((working[pos] != ’0’) && (working[pos] != working[pos-1]))

result[result_length++] = working[pos];

/* Pad the result with zeros */

while (result_length < length)

result[result_length++] = ’0’;

/* Trim the result to the required length */

result[length] = ’\0’; /* Place end of string marker */

}

main(int argc, char *argv[])

{

char name[STRING_SIZE + 1], soundex_code[STRING_SIZE + 1];

printf("Enter name: ");

gets(name);

soundex(soundex_code , name , SOUNDEX_SIZE);

printf("%s gives a code of %s\n", name, soundex_code);

}

12 Computer Supplement 16

THREE ROTOR ENCRYPTION SYSTEM

MONIOC

This program is based on the Japanese
Purple code described by David Kahn in
The CodeBreakers . (As an aside, I just
about inhaled this book when I read it for
the first time !). In his description the ma-
chine used five rotary discs and I thought
three would be enough to prove the point.
The number of matrices can be increased
easily by repeating and adding to lines
400–600. (The entire program was written
in GW-BASIC on an AT clone.) Another
modification was to extend the number of
characters to 81. This was needed to make
the 9x9 array which I used.

Some observations of my own on the per-
formance of this cipher. I find that the
CODing and DECoding works well with-
out error if the DECode characters are en-
tered in the right sequence. However, if a
character is incorrect the remainder of the
text is garbled. I have tried to find period-

icity within the cipher text but I am sure
that it exists and would provide a pene-
tration point for deciphering. If the mes-
sage always starts with the same character
group the cipher will show the same char-
acter string.

One way to prevent this is to include new
values for B1, B2 and B3 at some random
point within the message so that they may
be used in the succeeding message(s). This
can be done at each message and effectively
produce a “one-time pad.”

Of course, the program has significant
weaknesses. That is if the program is re-
covered with the attendant matrices shown
then all bets are off.

The following is a description of the pro-
gram functions which can be helpful in
tracking the execution as it progresses:

5-30 Initialization of variables

40 Sets the sequence of change for each matrix

60-120 Operator inputs. If NEW MATRICES is selected the

present cipher cannot be recovered. It should

only be used when initiated at the start of a

sequence of messages or when the cipher has been

compromised.

200-290 Message entry. Up to 512 characters can be

entered for the version. It can be extended if

necessary.

300-650 Sets up the matrix search for each character and

indexes each change in each matrix before

searching for the next character in the succeeding

matrix. This is the attempt to rotate the discs

as in the Purple machine (see line 40).

650-700 Print instructions to the screen.

5000-5100 This routine insures that if the change sequence

Summer 1992 13

goes past the matrix limit it is returned to that

matrix. This is to imitate a wheel used in some

enciphering devices.

6000-6300 These are to get the right matrix in order to

search for the next character.

7000-7200 These lines are used to retrieve the character

set in order to generate the matrices.

7300-8400 These lines generate the three matrices used

in this program. The three matrices are stored on

disc for use.

9000-9100 This sequence is the heart of the ciphering technique.

The shuffling of the characters is based on a

pseudo-random generator within the computer.

It is not really necessary to have a true random

generator as long as the matrices are sufficiently in

structure.

9500-9840 This code is used to retrieve the matrix data and

send it to the printer.

COD-DEC6.BAS

5 REM COD/DEC 6

10 DIM E$(85),F$(85),W$(10)

20 DIM Z$(10),U$(10),V$(10),S$(81)

30 HH=0:V=0:DIM LL$(300):WW$=CHR$(32)

40 B1=3:B2=-5:B3=4

50 CLS:LOCATE 10,25: INPUT "COD OR DEC" ;H$

60 IF H$="COD" THEN K1=1 ELSE K1=-1

80 CLS:LOCATE 10,25: INPUT "PRINT MATRICES" ;QP$

90 IF QP$="Y" THEN 9500 ELSE 110

110 CLS:LOCATE 10,25: INPUT "NEW MATRICES" ;Q$

120 IF Q$="Y" THEN GOSUB 7000 ELSE 140

140 CLS:GOSUB 6000

200 LOCATE 5,10: INPUT OO$

202 IF LEN(OO$)>254 THEN INPUT KK$

206 JJ$=OO$

208 LPRINT TAB(12);OO$+KK$:LPRINT:LPRINT

218 FOR CC= 1 TO LEN(JJ$+KK$)

220 J$=MID$(JJ$,CC,1)

290 IF LEN(J$)>1 THEN 200

300 IF H$="COD" THEN FOR X=1 TO 3:ON X GOSUB 400,500,600:NEXT X

320 IF H$="DEC" THEN FOR X=1 TO 3:ON X GOSUB 600,500,400:NEXT X

14 Computer Supplement 16

340 GOTO 650

400 FOR I=1 TO 9:FOR J=1 TO 9

410 IF H$="COD" AND MID$(W$(I),J,1)=J$ THEN 430

415 IF H$="DEC" AND MID$(W$(I),J,1)=N$ THEN 430

420 NEXT J,I

430 I=I+B1*K1:J=J+B1*K1:IF (I>9 OR J>9) THEN GOSUB 5000

431 REM LOCATE 5,25:PRINT"I=";I;" ";"J=";J;"B1=";B1;" ";"431"

435 IF(I<=0 OR J<=0) THEN GOSUB 5000

440 Z$= MID$(W$(I),J,1)

450 B1=B1+1:IF B1>6 THEN B1=1

460 RETURN

500 FOR I=1 TO 9:FOR J=1 TO 9

510 IF H$="COD" AND MID$(U$(I),J,1)=Z$ THEN 530

515 IF H$="DEC" AND MID$(U$(I),J,1)=RR$ THEN 530

520 NEXT J,I

530 I=I+B2*K1:J=J+B2*K1:IF (I>9 OR J>9) THEN GOSUB 5000

535 IF (I<1 OR J<1) THEN GOSUB 5000

540 N$= MID$(U$(I),J,1)

542 B2=B2-1:IF B2<1 THEN B2=5

560 RETURN

600 FOR I=1 TO 9:FOR J=1 TO 9

610 IF H$="COD" AND MID$(V$(I),J,1)=N$ THEN 630

615 IF H$="DEC" AND MID$(V$(I),J,1)=J$ THEN 630

620 NEXT J,I

630 I=I+B3*K1:J=J+B3*K1:IF (I>9 OR J>9) THEN GOSUB 5000

635 IF (I<1 OR J<1) THEN GOSUB 5000

640 RR$= MID$(V$(I),J,1)

642 B3=B3+1:IF B3>5 THEN B3=2

645 RETURN

650 IF H$="COD" AND INT(HH/6)=HH/6 THEN HH=HH+1

660 IF H$="COD" THEN LOCATE(10+VV),(10+HH):PRINT RR$;

662 IF H$="COD" THEN LL$=RR$

665 IF H$="DEC" THEN LL$=Z$

670 IF H$="DEC" THEN LOCATE(10+VV),(10+HH):PRINT Z$;

675 IF HH>=50 THEN VV=VV+2

677 IF HH>=50 THEN HH=0

678 IF VV=24 THEN VV=10

680 HH=HH+1

682 IF H$="COD" THEN LPRINT TAB(10+HH);LL$;

685 IF H$="DEC" THEN LPRINT TAB(10+HH);LL$;

690 NEXT CC

700 END

5000 REM WRAP-AROUND ROUTINE

5020 IF J>9 THEN J=J-9

5040 IF J<0 THEN J=J+9

5045 IF J=0 THEN J=J+9

5060 IF I>9 THEN I=I-9

5080 IF I<0 THEN I=I+9

5085 IF I=0 THEN I=I+9

5100 RETURN

Summer 1992 15

6000 REM MATRIX1A

6010 T$="MATRIX1A"

6020 OPEN "R",#1,T$,9

6030 FIELD #1,9 AS B$

6040 FOR X=1 TO 9

6050 CODE%=X

6060 GET #1,CODE%

6070 REM A=CVS(D$)

6080 W$(X)=B$

6090 NEXT X: CLOSE

6100 REM MATRIX2A

6110 T$="MATRIX2A"

6120 OPEN "R",#1,T$,9

6130 FIELD #1,9 AS B$

6140 FOR X=1 TO 9

6150 CODE%=X

6160 GET #1,CODE%

6170 REM A=CVS(D$)

6180 U$(X)=B$

6190 NEXT X : CLOSE

6200 REM MATRIX3A

6210 T$="MATRIX3A"

6220 OPEN "R",#1,T$,9

6230 FIELD #1,9 AS B$

6240 FOR X=1 TO 9

6250 CODE%=X

6260 GET #1,CODE%

6270 REM A=CVS(D$)

6280 V$(X)=B$

6290 NEXT X : CLOSE

6300 RETURN

7000 REM MATRIX GEN SHORT

7020 T$="CHARSET"

7040 OPEN "R",#1,T$,1

7050 FIELD #1,1 AS B$

7060 FOR X=1 TO 81

7065 CODE%=X

7070 GET #1,CODE%

7080 REM A=CVS(D$)

7090 E$(X)=B$

7100 NEXT X: CLOSE

7140 FOR X=1 TO 81

7170 IF E$(X)=" " THEN E$(X)=CHR$(32)

7180 F$(X)=E$(X)

7190 PRINT F$(X);

7195 NEXT X

7200 REM MATRIX GEN

7280 GOSUB 9000

7300 I=1:W$=""

7310 FOR J=1 TO 81

7320 W$(I)=W$(I)+F$(J)

7330 IF INT(J/9)=J/9 THEN I=I+1

7340 IF I=10 THEN 7360

7350 NEXT J

7360 FOR X=1 TO 9:PRINT W$(X),:NEXT X

7440 REM MATRIX1A

7460 T$="MATRIX1A"

7480 OPEN "R",#1,T$,9

7500 FIELD #1,9 AS B$

7520 FOR X=1 TO 9

7540 CODE%=X

7560 LSET B$=W$(X)

7580 REM LSET D$=MKS$(X)

7590 PUT #1,CODE%

7600 NEXT X

7610 CLOSE

7620 REM MATRIX GEN

7622 FOR X=1 TO 9:U$(X)="":NEXT X

7625 GOSUB 9000

7630 I=1:U$=""

7640 FOR J=1 TO 81

7650 U$(I)=U$(I)+F$(J)

7660 IF INT(J/9)=J/9 THEN I=I+1

7670 IF I=10 THEN 7690

7680 NEXT J

7690 PRINT:PRINT

7695 FOR X=1 TO 9:PRINT U$(X),:NEXT X

7800 REM MATRIX2A

7820 T$="MATRIX2A"

7840 OPEN "R",#1,T$,9

7860 FIELD #1,9 AS B$

7880 FOR X=1 TO 9

7900 CODE%=X

7910 LSET B$=U$(X)

7920 REM LSET D$=MKS$(X)

7940 PUT #1,CODE%

7960 NEXT X

7980 CLOSE

8000 REM MATRIX GEN

8010 I=1:V$=""

8012 FOR X=1 TO 9:V$(X)="":NEXT X

8020 GOSUB 9000

8030 FOR J=1 TO 81

8040 V$(I)=V$(I)+ F$(J)

16 Computer Supplement 16

8050 IF INT(J/9)=J/9 THEN I=I+1

8060 IF I=10 THEN 8080

8070 NEXT J

8080 FOR X=1 TO 9:PRINT V$(X),:NEXT X

8180 REM MATRIX 3A

8200 T$="MATRIX3A"

8220 OPEN "R",#1,T$,9

8240 FIELD #1,9 AS B$

8260 FOR X=1 TO 9

8280 CODE%=X

8300 LSET B$=V$(X)

8320 REM LSET D$=MKS$(X)

8340 PUT #1,CODE%

8350 NEXT X

8360 CLOSE

8370 STOP

9000 REM SHUFFLE ROUTINE

9010 N=1

9015 RANDOMIZE TIMER

9020 FOR X=N TO 81

9030 REM Y=INT(RND*(81))+1

9034 Y=INT(RND*81+1)

9036 SWAP F$(Y),F$(N)

9070 N=N+1:IF N>81 THEN N=81

9080 NEXT X

9081 PRINT

9084 FOR X=1 TO 81

9086 PRINT F$(X);

9088 NEXT X

9090 RETURN

9100 REM LEN=4215 BYTES

9110 STOP

9500 REM READ MATRIX1A

9510 T$="MATRIX1A"

9520 OPEN "R",#1,T$,9

9530 FIELD #1,9 AS B$

9540 FOR X=1 TO 9

9550 CODE%=X

9555 GET #1,CODE%

9565 W$(X)=B$

9570 NEXT X

9580 CLOSE

9600 REM READ MATRIX2A

9610 T$="MATRIX2A"

9620 OPEN "R",#1,T$,9

9630 FIELD #1,9 AS B$

9640 FOR X=1 TO 9

9650 CODE%=X

9655 GET #1,CODE%

9665 U$(X)=B$

9670 NEXT X

9680 CLOSE

9700 REM READ MATRIX 3A

9710 T$="MATRIX3A"

9720 OPEN "R",#1,T$,9

9730 FIELD #1,9 AS B$

9740 FOR X= 1 TO 9

9750 CODE%=X

9755 GET #1,CODE%

9765 V$(X)=B$

9770 NEXT X:CLOSE

9780 CLS

9790 FOR X=1 TO 9

9800 LOCATE (X+10),10:LPRINT W$(X),

9810 LOCATE (X+10),22:LPRINT U$(X),

9820 LOCATE (X+10),34:LPRINT V$(X)

9830 NEXT X

9840 END

Summer 1992 17

CHARGEN.BAS

5 REM DEFINE CHAR SET FOR MATRICES

20 DIM E$(81)

30 T$="CHARSET"

40 FOR X=1 TO 81

60 CLS

100 LOCATE 8,15

120 INPUT "ENTER A CHARACTER";O$

140 E$(X)=O$

180 NEXT X

300 OPEN "R",#1,T$,6

320 FIELD #1,6 AS B$

340 FOR X=1 TO 81

360 CODE%=X

380 LSET B$=E$(X)

400 REM LSET D$=MKS$(X)

420 PUT #1,CODE%

440 NEXT X

460 CLOSE

500 FOR X=1 TO 81

520 PRINT E$(X);" ";

540 NEXT X

560 REM END

580 T$="CHARGEN"

600 OPEN "R",#1,T$,6

610 FIELD #1,6 AS B$

620 FOR X=1 TO 81

630 CODE%=X

640 GET #1,CODE%

650 PRINT B$;" ";

655 NEXT X

660 CLOSE

670 END

CHARGEN1.BAS

5 REM DEFINE CHAR SET FOR MATRICES

20 DIM E$(81)

30 T$="CHARSET1"

40 FOR X=1 TO 26

60 CLS

100 LOCATE 8,15

120 INPUT "ENTER A CHARACTER";O$

140 E$(X)=O$

180 NEXT X

300 OPEN "R",#1,T$,1

320 FIELD #1,1 AS B$

340 FOR X=1 TO 26

360 CODE%=X

380 LSET B$=E$(X)

400 REM LSET D$=MKS$(X)

420 PUT #1,CODE%

440 NEXT X

460 CLOSE

500 FOR X=1 TO 26

520 PRINT E$(X);" ";

540 NEXT X

560 REM END

580 T$="CHARSET1"

600 OPEN "R",#1,T$,1

610 FIELD #1,1 AS B$

620 FOR X=1 TO 81

630 CODE%=X

640 GET #1,CODE%

650 PRINT B$;" ";

655 NEXT X

660 CLOSE

670 END

18 Computer Supplement 16

CHARSET.BAS

5 REM DEFINE CHAR SET FOR MATRICES

20 DIM E$(81)

30 T$="CHARSET"

40 FOR X=1 TO 81

60 CLS

100 LOCATE 8,15

120 INPUT "ENTER A CHARACTER";O$

140 E$(X)=O$

180 NEXT X

300 OPEN "R",#1,T$,1

320 FIELD #1,1 AS B$

340 FOR X=1 TO 81

360 CODE%=X

380 LSET B$=E$(X)

400 REM LSET D$=MKS$(X)

420 PUT #1,CODE%

440 NEXT X

460 CLOSE

500 FOR X=1 TO 81

520 PRINT E$(X),

540 NEXT X

560 END

570 DIM E$(81)

580 T$="CHARSET"

600 OPEN "R",#1,T$,1

610 FIELD #1,1 AS B$

620 FOR X=1 TO 81

630 CODE%=X

640 GET #1,CODE%

650 REM A=CVS(D$)

660 E$(X)=B$

670 PRINT E$(X);

680 NEXT X

690 CLOSE

RDMATRX.BAS

5 REM READ MATRIX

6 DIM A$(9)

10 PRINT "WHICH MATRIX DO YOU WANT?"

20 INPUT T$

30 OPEN "R",#1,T$,9

40 FIELD #1,9 AS B$

50 FOR X=1 TO 9

60 CODE%=X

70 GET #1,CODE%

80 A$(X)=B$

90 NEXT X

100 CLOSE

110 FOR X=1 TO 9:PRINT A$(X),:NEXT X

Summer 1992 19

WHAT THE OTHER GUY IS DOING

Tom Martin is looking for a program
that will automatically break Aristocrats.
Anyone have one that’s fairly well docu-
mented ?

John Eubanks is a Commodore C64 en-
thusiast, and is looking for others of the
Krewe that share the same interest and
would be willing to exchange programs and
ideas.

TATTERS (Caxton Foster) writes:
“. . . does anyone in the Krewe have any
references to Change Ringing ? I’ll gladly
pay for photocopies since our library is very
proud of the fact that they keep in-depth
back copies of the New York Times — all
the way back to last week. I have Wil-
son’s Change Ringing but would welcome
any other.”

TEOWOC (Gary Thomas) uses
Hewlett-Packard’s HP–UX at work on a
Series 300, and writes in 80C196 assembly
language. At home he uses a Macintosh
SE and writes in SPITBOL.

Richard Kummer is looking for more
information about vowel searching. He’s
familiar with the entry in the January
1986 Cryptologia, but is trying to get
some BASIC programs in electronic for-
mat. PHOENIX has helped out with an
offer to put his programs on disk; anyone
else have something that could help ?

KARL (Waldo Boyd) is working in
QuickBASIC, and thought it might be in-
teresting to see a comparison of the cur-
rent crop of BASIC programming tools and
products. Any volunteers ?

A DES DONGLE

The GL306060 Hardlock–DES parallel
port adapter incorporates an application–
specific IC that encrypts and decrypts data
using the DES algorithm. The GlenDES
chip features nonvolatile 8–byte internal
EEPROM for storing the DES key.

The Hardlock–DES, which connects di-
rectly to your PC’s printer port, is trans-
parent to normal printer operation. The

unit’s key–management features support
private and public key modes.

Price: $149.
Contact: Glenco Engineering, Inc.
270 Lexington Drive
Buffalo Grove, Illinois 60089
(708) 808–0300
fax (708) 808–0313

20 Computer Supplement 16

LETTER COUNTING

One popular method for analyzing ciphers
is to generate a frequency count of letters
in the text. A frequency count answers
the question “How many times does a cer-
tain letter appear in the text ?” Frequency
counts are one of the basic computations
performed by cryptanalysts. This article
will describe a tool to produce simple let-
ter counts.

In any language certain letters are used
more often than others. In English, for ex-
ample, it is far more common to see the
letters E, T, and N than say X, Q, and Z.
Kahn[1] gives the following percentages for
likelihood of appearance for letters in the
English language:

A B C D E F G

8 1.5 3 4 13 2 1.5

H I J K L M

6 6.5 0.5 0.5 3.5 3

N O P Q R S T

7 8 2 0.25 6.5 6 9

U V W X Y Z

3 1 1.5 0.5 2 0.25

This property often gives the cryptanalyst
a head–start in solving a cipher.

Gaines[2] suggests an additional metric for
cracking substitution ciphers, which she
calls Variety of Contact. It is essentially a
count of letters that are found next to other
letters. For instance, in the text “EN-
CODE THE WORD” a frequency count
would give us the following information:

E: 3 N: 1 C: 1

O: 2 D: 2 T: 1

H: 1 W: 1 R: 1

and a Variety of Contact would tell us:

LETTER FOUND NEXT TO

------ -------------

E N, D, H.

N E, C.

C N, O.

O C, D, W, R.

D O, E, R.

T H.

etc.

In tabular format it would look like this:

C (1): N1 O1

D (2): E1 O1 R1

E (3): D1 H1 N1

H (1): E1 T1

N (1): C1 E1

O (2): C1 D1 R1 W1

R (1): D1 O1

T (1): H1

W (1): O1

The cryptanalyst would use this chart to
look for patterns of pairs that would de-
crypt into common common digraphs (TH,
AN, NE, etc.). See Gaines for an explana-
tion and example of this technique.

Presented below is a BASIC program to
compute frequency and variety of contact,
and a C language program with options for
sorting the results. [Editor’s Note: Both of
these programs are available on Issue Disk

Summer 1992 21

16. DMV] I hope these programs will serve
as a starting point for further discussion of
statistical properties of ciphers.

References

[1] Kahn, David; The CodeBreakers, 1967;
Macmillan Publishing, New York

[2] Gaines, Helen Fouches; Cryptanalysis,
1956; Dover Publications, New York

FQCT.BAS

1000 ’ FREQCONT.BAS

1010 ’ Report frequency count and variety of contact

1020 ’

1030 A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

1040 AL = LEN(A$)

1050 DIM F(26), C(26,26,2)

1060 ’

1070 ’ Zero the counters

1080 ’

1090 FOR I = 1 TO AL

1100 F(I) = 0

1110 FOR J = 1 TO AL

1120 C(I,J,1) = 0

1130 C(I,J,2) = 0

1140 NEXT J

1150 NEXT I

1160 ’

1170 ’ Open the input file

1180 ’

1190 PRINT "Filename";

1200 INPUT F$

1210 OPEN F$ FOR INPUT AS #1

1220 ’

1230 IF EOF(1) THEN 1610

1240 ’ read in the next line

1250 INPUT #1, B$

1260 ’ set the last character holder to SPACE

1270 LC$=" "

1280 ’

1290 FOR L = 1 TO LEN(B$)

1300 ’

1310 ’ Get the next character and make it uppercase, if necessary

1320 ’

1330 C = ASC(MID$(B$, L, 1))

22 Computer Supplement 16

1340 IF C >= ASC("a") AND C <= ASC("z") THEN C = C - 32

1350 C$ = CHR$(C)

1360 P = INSTR(A$, C$)

1370 IF P = 0 THEN 1550

1380 ’

1390 ’ character C$ appears in the alphabet list, so count it

1400 ’

1410 F(P) = F(P) + 1

1420 ’

1430 ’ check if the last character is also in the alphabet list

1440 ’

1450 LP = INSTR(A$, LC$)

1460 IF LP = 0 THEN 1550

1470 ’

1480 ’ It is, so increment the contact pointers for each letter

1490 ’

1500 C(P,LP,1) = C(P,LP,1) + 1

1510 C(LP,P,2) = C(LP,P,2) + 1

1520 ’

1530 ’ set last character to this character for the next pass

1540 ’

1550 LC$ = C$

1560 NEXT L

1570 GOTO 1230

1580 ’

1590 ’ Input file is exhausted, so close it and report results

1600 ’

1610 CLOSE #1

1620 FOR I = 1 TO AL

1630 IF F(I) = 0 THEN 1960

1640 ’

1650 ’ report letter and frequency

1660 ’

1670 N$=STR$(F(I))

1680 N$=MID$(N$,2,LEN(N$)-1)

1690 PRINT MID$(A$,I,1);" (";N$;"): ";

1700 ’

1710 ’ Check for contact counts

1720 ’

1730 FOR J = 1 TO AL

1740 IF C(I,J,1) + C(I,J,2) = 0 THEN 1940

1750 ’

1760 PRINT " ";

1770 ’

1780 ’ contacts before letter

1790 ’

1800 IF C(I,J,2) = 0 THEN 1850

Summer 1992 23

1810 N$=STR$(C(I,J,2))

1820 N$=MID$(N$,2,LEN(N$)-1)

1830 PRINT N$;

1840 ’

1850 PRINT MID$(A$,J,1);

1860 ’

1870 ’ contacts after letter

1880 ’

1890 IF C(I,J,1) = 0 THEN 1940

1900 N$=STR$(C(I,J,1))

1910 N$=MID$(N$,2,LEN(N$)-1)

1920 PRINT N$;

1930 ’

1940 NEXT J

1950 PRINT

1960 NEXT I

1970 ’

1980 END

FREQCONT.C

/* FREQCONT.C

** Reports frequency count and Variety of Contact

**

** Uses ANSI-style function prototyping

*/

#include <stdio.h>

#define FALSE 0

#define TRUE 1

/* tags for position-sensitive contact */

#define BEFORE 0

#define AFTER 1

/* tags for type of report sorting */

#define ALPHABETICAL 0

#define FREQUENCY 1

#define CONTACT 2

24 Computer Supplement 16

/* length and characters recognized */

#define ALPHABET_LENGTH 26

char alphabet[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

#define SPACE ((char) 32)

#define CARRIAGE_WIDTH 70

#define INTERVAL_SPACE " "

/* globals for simple print formatting */

int carriage_position;

int initial_tab;

/* output routines to format reports */

void output_header(char *h)

{

printf(h);

initial_tab = strlen(h);

carriage_position = initial_tab;

}

void output_char(char c)

{

printf("%c", c);

carriage_position++;

}

void output_string(char *s)

{

int i;

char text[40];

for (i = 0; i < strlen(s); i++)

output_char(s[i]);

if (carriage_position > CARRIAGE_WIDTH)

if (!strcmp(s, INTERVAL_SPACE))

{

printf("\n");

for (i = 0; i < initial_tab; i++)

text[i] = SPACE;

text[i] = ’\0’;

Summer 1992 25

output_header(text);

}

}

void output_number(int n)

{

char text[10];

sprintf(text, "%d", n);

output_string(text);

}

/* Quick and dirty routine to return position of character in a string */

int strInPos(char *source, char c)

{

int pos;

pos = 0;

while(source[pos])

{

if (source[pos] == c)

return(pos);

pos++;

}

return(-1);

}

main(int argc, char *argv[])

{

FILE *fp_in;

int frequency[ALPHABET_LENGTH];

int contact[ALPHABET_LENGTH][ALPHABET_LENGTH][2];

int value[ALPHABET_LENGTH], index[ALPHABET_LENGTH];

int i, j;

int index_loop;

int count, back;

int contacts_before, contacts_after, contacts_total;

26 Computer Supplement 16

int carriage_position, initial_tab;

char buffer[2], text[20], previous_character;

int report_position;

int sort_by;

char *filename;

/* default options */

report_position = FALSE;

sort_by = ALPHABETICAL;

filename = (char *) NULL;

/* search argument list for input filename and options */

for (i = 1; i < argc; i++)

if ((argv[i][0] == ’/’) || (argv[i][0] == ’-’))

{

switch(toupper(argv[i][1])) {

case ’C’:

sort_by = CONTACT;

break;

case ’F’:

sort_by = FREQUENCY;

break;

case ’P’:

report_position = TRUE;

break;

default:

printf("Ignoring unknown option %c.\n",

toupper(argv[i][1]));

break;

}

}

else

filename = argv[i];

/* If there was no filename on the command line, print help */

if (!filename)

{

Summer 1992 27

puts("Usage: FREQCONT [options] input_file");

puts(" input_file is ASCII text file to count");

puts(" Options:");

puts(" -p report contact position as nXm");

puts(" where X = contacted letter");

puts(" n = letter count before");

puts(" m = letter count after");

puts(" -c sort report by variety of contact");

puts(" -f sort report by letter frequency");

exit(-1);

}

/* Open the input file */

if ((fp_in = fopen(filename , "rb")) == NULL)

{

printf("Can’t open %s\n", filename);

exit(-1);

}

/* Zero the counters */

for (i = 0; i < ALPHABET_LENGTH; i++)

{

frequency[i] = 0;

for (j = 0; j < ALPHABET_LENGTH; j++)

{

contact[i][j][BEFORE] = 0;

contact[i][j][AFTER] = 0;

}

}

/* Read each character in the file and count it properly */

previous_character = SPACE;

while(1)

{

/* read one character */

count = fread(buffer, 1, 1, fp_in);

/* exit the loop if there aren’t any left */

if (!count)

break;

28 Computer Supplement 16

/* make the character uppercase */

buffer[0] = toupper(buffer[0]);

/* Is it a recognized character ? */

i = strInPos(alphabet , buffer[0]);

if (i > -1)

{

/* count it */

frequency[i]++;

/* count contacts */

back = strInPos(alphabet , previous_character);

if (back > -1)

{

contact[i][back][BEFORE]++;

contact[back][i][AFTER]++;

}

}

previous_character = buffer[0];

}

/* We’re done with the file, so close it up */

fclose(fp_in);

/* Set up the value array for use by the sorting routine */

switch(sort_by) {

case ALPHABETICAL:

puts("ALPHABETICAL");

for (i = 0; i < ALPHABET_LENGTH; i++)

value[i] = ALPHABET_LENGTH - i;

break;

case CONTACT:

puts("CONTACT");

for (i = 0; i < ALPHABET_LENGTH; i++)

{

value[i] = 0;

for (j = 0; j < ALPHABET_LENGTH; j++)

{

value[i] += contact[i][j][BEFORE];

value[i] += contact[i][j][AFTER];

}

Summer 1992 29

}

break;

case FREQUENCY:

puts("FREQUENCY");

for (i = 0; i < ALPHABET_LENGTH; i++)

value[i] = frequency[i];

break;

}

/* Generic search for highest values */

for (i = 0; i < ALPHABET_LENGTH; i++)

{

index[i] = 0;

for (j = 0; j < ALPHABET_LENGTH; j++)

{

if (value[index[i]] < value[j])

index[i] = j;

}

value[index[i]] = -1;

}

/* Report results */

for (index_loop = 0; index_loop < ALPHABET_LENGTH; index_loop++)

{

i = index[index_loop];

if (frequency[i])

{

contacts_total = 0;

contacts_before = 0;

contacts_after = 0;

sprintf(text, "%c (%d):", alphabet[i], frequency[i]);

output_header(text);

for (j = 0; j < ALPHABET_LENGTH; j++)

if ((contact[i][j][BEFORE]) ||

(contact[i][j][AFTER]))

{

contacts_total++;

output_string(INTERVAL_SPACE);

30 Computer Supplement 16

if (report_position == TRUE)

{

if (contact[i][j][AFTER])

{

contacts_after++;

output_number(contact[i][j][AFTER]);

}

output_char(alphabet[j]);

if (contact[i][j][BEFORE])

{

contacts_before++;

output_number(contact[i][j][BEFORE]);

}

}

else

{

output_number(contact[i][j][BEFORE] + contact[i][j][AFTER]);

output_char(alphabet[j]);

}

}

if (report_position == TRUE)

{

sprintf(text, " [%d %d]", contacts_after,

contacts_before);

output_string(text);

}

sprintf(text, " [%d]\n", contacts_total);

output_string(text);

}

}

}

Summer 1992 31

FASTER PERMUTATION ROUTINE

TATTERS

This program permutes the numbers in
cells C(1) . . . C(N). The “Initialize” sub-
routine sets up the numbers 1 through N
in those cells. Each time the Generate sub-
routine is called it returns the “alphabeti-
cally next” permutation in the C’s.

In lines 210–270 the algorithm begins with
cell N and searches backwards toward cell
1 looking for a “down step” — that is, a cell
K such that the contents of cell K is less
than the contents of cell K+1. In 310–360

it marks off as busy the numbers in cells 1
through K − 1. Then in 370–410 it finds
the smallest non-busy number larger than
the current contents of C(K).

Lastly in 430–470 it puts the remaining
non-busy numbers into the cells K + 1
through N , in ascending order.

Time to generate a new permutation is or-
der N as opposed to at least order N2 for
PERMUTE.BAS.

10 REM MAIN PROG

20 CLS

30 INPUT "N=";N

40 FOR I=1 TO N

42 PRINT I;

44 NEXT I

46 PRINT

50 GOSUB 150

60 GOSUB 210

70 IF FG=1 THEN 130

80 FOR I=1 TO N

90 PRINT C(I);

100 NEXT I

110 PRINT

120 GOTO 60

130 PRINT "ALL DONE"

140 END

150 REM INITIALIZE

160 DIM C(20)

170 FOR I=1 TO N

180 C(I)=I

190 NEXT I

200 RETURN

210 REM GENERATE NEW PERMUTATION

220 PV=0

230 K=N

240 IF C(K) < PV THEN 300

250 PV=C(K)

260 K=K-1

270 IF K>0 THEN 240

280 FG=1

290 RETURN

300 REM FILL IN

310 FOR I=1 TO N

320 D(I)=0

330 NEXT I

340 FOR I=1 TO K-1

350 D(C(I))=1

360 NEXT I

370 FOR I=C(K)+1 TO N

380 IF D(I)=0 THEN F1=I:I=N

390 NEXT I

400 D(F1)=1

410 C(K)=F1

420 K=K+1

430 FOR I=1 TO N

440 IF D(I)=1 THEN 470

450 C(K)=I

460 K=K+1

470 NEXT I

480 RETURN

32 Computer Supplement 16

THE PUBLIC KEY

Volume 1 Issue 3 of The Public Key is avail-
able, containing information and programs
relating to Public Key cryptography. This
publication from the United Kingdom dis-
cusses DES security, digital signature stan-
dards, and other modern systems. There
are also articles concerning electronic funds
and automated teller machine fraud, and
concludes with a message about crypto-
graphic legislation in the United States.

The editors work very hard to describe rel-

atively complicated processes in a clear and
concise manner. It is well worth a copy
if just to read the excellent explanation of
how Public Key cryptography works. The
Public Key is available from:

George Foot

Waterfall, Uvedale Road,

Oxted, Surrey

RH8 0EW United Kingdom

ABOUT THIS ISSUE

This issue was produced using Donald
Knuth’s amazing TEX typesetting pro-
gram, with help from various style files, es-
pecially multicol.sty. The .tex file that
produced this issue is about 60,000 bytes,
and is edited with a simple ASCII text ed-
itor (MKS Toolkit’s vi). The pcTEX ver-
sion I have runs fine on my IBM–PC 8086
clone in 640K of memory !

The utilities ptihp and ptispool were
used to print this on a Hewlett-Packard
LaserJet IIIP, a 300 dpi laser printer. I’ve
retired my HP DeskJet after three years
of faithful service, an replaced it with the
LaserJet for about $1100 (US). Besides the
usual outstanding HP quality, it gives me
scalable fonts and many programmable fea-
tures, including HP’s PCL 5 Printer Lan-
guage. Highly recommended !

